manaestras commited on
Commit
f3d5070
·
verified ·
1 Parent(s): 82992bf

Delete tokenization_hy.py

Browse files
Files changed (1) hide show
  1. tokenization_hy.py +0 -297
tokenization_hy.py DELETED
@@ -1,297 +0,0 @@
1
- import base64
2
- import logging
3
- import os
4
- import unicodedata
5
- from typing import Collection, Dict, List, Set, Tuple, Union
6
-
7
- import tiktoken
8
- from transformers import PreTrainedTokenizer, AddedToken
9
-
10
- logger = logging.getLogger(__name__)
11
-
12
-
13
- VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
14
-
15
- PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
16
- # PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
17
- ENDOFTEXT = "<|endoftext|>"
18
- STARTOFTEXT = "<|startoftext|>"
19
- BOSTOKEN = "<|bos|>"
20
- EOSTOKEN = "<|eos|>"
21
- PADTOKEN = "<|pad|>"
22
-
23
- # as the default behavior is changed to allow special tokens in
24
- # regular texts, the surface forms of special tokens need to be
25
- # as different as possible to minimize the impact
26
- EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
27
- # changed to use actual index to avoid misconfiguration with vocabulary expansion
28
-
29
-
30
- SPECIAL_START_ID = 127957
31
-
32
- def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
33
- # with open(tiktoken_bpe_file, "rb", encoding="utf-8") as f:
34
- # contents = f.read()
35
- dic = {}
36
- rank = 0
37
- for line in open(tiktoken_bpe_file, "rb"):
38
- if line:
39
- token, _ = line.split()
40
- if base64.b64decode(token) in dic:
41
- continue
42
- dic[base64.b64decode(token)] = int(rank)
43
- rank += 1
44
- global SPECIAL_START_ID
45
- SPECIAL_START_ID=rank
46
- return dic
47
-
48
- # NOTE: Please use the code line to check `SPECIAL_START_ID` right, this will affect the SPECIAL_START_ID
49
- # print(SPECIAL_START_ID)
50
-
51
- SPECIAL_TOKENS = tuple(
52
- enumerate(
53
- (
54
- (
55
- ENDOFTEXT,
56
- STARTOFTEXT,
57
- BOSTOKEN,
58
- EOSTOKEN,
59
- PADTOKEN,
60
- )
61
- + EXTRAS
62
- ),
63
- start=SPECIAL_START_ID,
64
- )
65
- )
66
- # NOTE: Unused Token ID starts from 127962
67
- SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
68
-
69
- class HYTokenizer(PreTrainedTokenizer):
70
- """hunyuan tokenizer."""
71
-
72
- vocab_files_names = VOCAB_FILES_NAMES
73
-
74
- def __init__(
75
- self,
76
- vocab_file,
77
- errors="replace",
78
- extra_vocab_file=None,
79
- **kwargs,
80
- ):
81
- super().__init__(**kwargs)
82
-
83
- # how to handle errors in decoding UTF-8 byte sequences
84
- # use ignore if you are in streaming inference
85
- self.errors = errors
86
-
87
- self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
88
- self.special_tokens = {
89
- token: index
90
- for index, token in SPECIAL_TOKENS
91
- }
92
-
93
- # try load extra vocab from file
94
- if extra_vocab_file is not None:
95
- used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
96
- extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
97
- for token, index in extra_mergeable_ranks.items():
98
- if token in self.mergeable_ranks:
99
- logger.info(f"extra token {token} exists, skipping")
100
- continue
101
- if index in used_ids:
102
- logger.info(f'the index {index} for extra token {token} exists, skipping')
103
- continue
104
- self.mergeable_ranks[token] = index
105
- # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
106
-
107
- enc = tiktoken.Encoding(
108
- "HunYuan",
109
- pat_str=PAT_STR,
110
- mergeable_ranks=self.mergeable_ranks,
111
- special_tokens=self.special_tokens,
112
- )
113
- assert (
114
- len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
115
- ), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"
116
-
117
- self.decoder = {
118
- v: k for k, v in self.mergeable_ranks.items()
119
- } # type: dict[int, bytes|str]
120
- self.decoder.update({v: k for k, v in self.special_tokens.items()})
121
-
122
- self.tokenizer = enc # type: tiktoken.Encoding
123
-
124
- self.eod_id = self.tokenizer.eot_token
125
- self.bod_id = self.special_tokens[STARTOFTEXT]
126
- self.bos_id = self.special_tokens[BOSTOKEN]
127
- self.eos_id = self.special_tokens[EOSTOKEN]
128
- self.pad_id = self.special_tokens[PADTOKEN]
129
-
130
- def __getstate__(self):
131
- # for pickle lovers
132
- state = self.__dict__.copy()
133
- del state["tokenizer"]
134
- return state
135
-
136
- def __setstate__(self, state):
137
- # tokenizer is not python native; don't pass it; rebuild it
138
- self.__dict__.update(state)
139
- enc = tiktoken.Encoding(
140
- "HunYuan",
141
- pat_str=PAT_STR,
142
- mergeable_ranks=self.mergeable_ranks,
143
- special_tokens=self.special_tokens,
144
- )
145
- self.tokenizer = enc
146
-
147
- def __len__(self) -> int:
148
- return self.tokenizer.n_vocab
149
-
150
- def get_vocab(self) -> Dict[bytes, int]:
151
- return self.mergeable_ranks
152
-
153
- def convert_tokens_to_ids(
154
- self, tokens: Union[bytes, str, List[Union[bytes, str]]]
155
- ) -> List[int]:
156
- ids = []
157
- if isinstance(tokens, (str, bytes)):
158
- if tokens in self.special_tokens:
159
- return self.special_tokens[tokens]
160
- else:
161
- return self.mergeable_ranks.get(tokens)
162
- for token in tokens:
163
- if token in self.special_tokens:
164
- ids.append(self.special_tokens[token])
165
- else:
166
- ids.append(self.mergeable_ranks.get(token))
167
- return ids
168
-
169
- def _add_tokens(
170
- self,
171
- new_tokens: Union[List[str], List[AddedToken]],
172
- special_tokens: bool = False,
173
- ) -> int:
174
- if not special_tokens and new_tokens:
175
- raise ValueError("Adding regular tokens is not supported")
176
- for token in new_tokens:
177
- surface_form = token.content if isinstance(token, AddedToken) else token
178
- if surface_form not in SPECIAL_TOKENS_SET:
179
- raise ValueError("Adding unknown special tokens is not supported")
180
- return 0
181
-
182
- def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
183
- """
184
- Save only the vocabulary of the tokenizer (vocabulary).
185
- Returns:
186
- `Tuple(str)`: Paths to the files saved.
187
- """
188
- file_path = os.path.join(save_directory, "hy.tiktoken")
189
- with open(file_path, "w", encoding="utf-8") as w:
190
- for k, v in self.mergeable_ranks.items():
191
- line = base64.b64encode(k).decode("utf-8") + " " + str(v) + "\n"
192
- w.write(line)
193
- return (file_path,)
194
-
195
- def tokenize(
196
- self,
197
- text: str,
198
- allowed_special: Union[Set, str] = "all",
199
- disallowed_special: Union[Collection, str] = (),
200
- **kwargs,
201
- ) -> List[Union[bytes, str]]:
202
- """
203
- Converts a string in a sequence of tokens.
204
- Args:
205
- text (`str`):
206
- The sequence to be encoded.
207
- allowed_special (`Literal["all"]` or `set`):
208
- The surface forms of the tokens to be encoded as special tokens in regular texts.
209
- Default to "all".
210
- disallowed_special (`Literal["all"]` or `Collection`):
211
- The surface forms of the tokens that should not be in regular texts and trigger errors.
212
- Default to an empty tuple.
213
- kwargs (additional keyword arguments, *optional*):
214
- Will be passed to the underlying model specific encode method.
215
- Returns:
216
- `List[bytes|str]`: The list of tokens.
217
- """
218
- tokens = []
219
- text = unicodedata.normalize("NFC", text)
220
-
221
- # this implementation takes a detour: text -> token id -> token surface forms
222
- for t in self.tokenizer.encode(
223
- text, allowed_special=allowed_special, disallowed_special=disallowed_special
224
- ):
225
- tokens.append(self.decoder[t])
226
- return tokens
227
-
228
- def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
229
- """
230
- Converts a sequence of tokens in a single string.
231
- """
232
- text = ""
233
- temp = b""
234
- for t in tokens:
235
- if isinstance(t, str):
236
- if temp:
237
- text += temp.decode("utf-8", errors=self.errors)
238
- temp = b""
239
- text += t
240
- elif isinstance(t, bytes):
241
- temp += t
242
- else:
243
- raise TypeError("token should only be of type types or str")
244
- if temp:
245
- text += temp.decode("utf-8", errors=self.errors)
246
- return text
247
-
248
- @property
249
- def vocab_size(self):
250
- return self.tokenizer.n_vocab
251
-
252
- def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
253
- """Converts an id to a token, special tokens included"""
254
- if index in self.decoder:
255
- return self.decoder[index]
256
- raise ValueError("unknown ids")
257
-
258
- def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
259
- """Converts a token to an id using the vocab, special tokens included"""
260
- if token in self.special_tokens:
261
- return self.special_tokens[token]
262
- if token in self.mergeable_ranks:
263
- return self.mergeable_ranks[token]
264
- raise ValueError("unknown token")
265
-
266
- def _tokenize(self, text: str, **kwargs):
267
- """
268
- Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
269
- vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
270
- Do NOT take care of added tokens.
271
- """
272
- raise NotImplementedError
273
-
274
- def _decode(
275
- self,
276
- token_ids: Union[int, List[int]],
277
- skip_special_tokens: bool = False,
278
- errors: str = None,
279
- **kwargs,
280
- ) -> str:
281
- if isinstance(token_ids, int):
282
- token_ids = [token_ids]
283
- if skip_special_tokens:
284
- token_ids = [i for i in token_ids if i < self.eod_id]
285
- return self.tokenizer.decode(token_ids, errors=errors or self.errors)
286
-
287
- # tests
288
- if __name__ == "__main__":
289
- tokenizer = HYTokenizer.from_pretrained('./other_tokenizer_vocab/hy')
290
- text = '你好,世界'
291
- tokens = tokenizer.tokenize(text)
292
- print(tokens)
293
- ids = tokenizer.convert_tokens_to_ids(tokens)
294
- print(ids)
295
- text2 = tokenizer.convert_tokens_to_string(tokens)
296
- print(text2)
297
- ids2 = tokenizer.convert_tokens_to_ids(tokens)