Create gpt_class.py
Browse files- gpt_class.py +252 -0
gpt_class.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import math
|
| 3 |
+
import time
|
| 4 |
+
import inspect
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
from hellaswag import render_example, iterate_examples
|
| 10 |
+
# --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
| 11 |
+
# From original transformer model gpt2 only have decoder part and also the cross-attention is not used.
|
| 12 |
+
# Also there's reshuffling layer-norms and Additional Layer normalization is added right before the soft-max layer.
|
| 13 |
+
|
| 14 |
+
class CausalSelfAttention(nn.Module): # this class combined the self-attention mechanism and multi-head attention mechanism in one class
|
| 15 |
+
|
| 16 |
+
def __init__(self, config):
|
| 17 |
+
super().__init__()
|
| 18 |
+
|
| 19 |
+
assert config.n_embd % config.n_head == 0 # n_emb is the embedding size and n_head is the number of heads in the multi-head attention mechanism
|
| 20 |
+
# (so the embedding size should be divisible by the number of heads)
|
| 21 |
+
self.c_attn = nn.Linear(config.n_embd, 3*config.n_embd) # Linear layer for the query, key and value projections for all heads, but in batch
|
| 22 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd) # Linear layer for the final output projection
|
| 23 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection
|
| 24 |
+
|
| 25 |
+
# Regularization
|
| 26 |
+
self.n_head = config.n_head
|
| 27 |
+
self.n_embd = config.n_embd
|
| 28 |
+
|
| 29 |
+
# self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1,1,config.block_size, config.block_size)) # Lower triangular matrix for masking future tokens
|
| 30 |
+
|
| 31 |
+
def forward(self,x):
|
| 32 |
+
B, T, C = x.size() # batch size, Sequence length, Embedding dimensionality (n_embd)
|
| 33 |
+
|
| 34 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dimension
|
| 35 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
| 36 |
+
# eg: in GPT-2 (124M), n_head=12, hs=64, so nh*hs = C = 768 channels in Transformer (channels is also called as hidden size)
|
| 37 |
+
qkv = self.c_attn(x) # qkv is the query, key and value projections for all heads
|
| 38 |
+
q,k,v = qkv.split(self.n_embd, dim=2) # Splitting the qkv into query, key and value projections
|
| 39 |
+
|
| 40 |
+
k = k.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
|
| 41 |
+
q = q.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
|
| 42 |
+
v = v.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
|
| 43 |
+
|
| 44 |
+
# attention (materializes the large (T,T) matrix for all queries and keys)
|
| 45 |
+
|
| 46 |
+
# att = ([email protected](-2,-1))*(1.0 / math.sqrt(k.size(-1))) # Multiplying the query and key and scaling it by the square root of the key size
|
| 47 |
+
# att = att.masked_fill(self.bias[:,:,:T,:T]==0, float('-inf')) # Masking the future tokens
|
| 48 |
+
# att = F.softmax(att, dim=-1) # Softmax over the last dimension
|
| 49 |
+
# y = att@v # Multiplying the attention weights with the values (B,nh,T,T) x (B,nh,T,hs) = (B,nh,T,hs)
|
| 50 |
+
|
| 51 |
+
# Attention on GPT2: ( matmul + mask + softmax + dropout + matmul ) ==> 15ms
|
| 52 |
+
# Flash Attention: Fused Kernel ==> 2.5ms
|
| 53 |
+
|
| 54 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
| 55 |
+
|
| 56 |
+
y = y.transpose(1,2).contiguous().view(B,T,C) # re-assemble all head outputs side by side
|
| 57 |
+
|
| 58 |
+
# Output Projection
|
| 59 |
+
y = self.c_proj(y) # Projecting the output to the original size
|
| 60 |
+
return y
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class MLP(nn.Module):
|
| 64 |
+
|
| 65 |
+
def __init__(self, config):
|
| 66 |
+
super().__init__() # Inheriting from the parent class nn.Module
|
| 67 |
+
self.c_fc = nn.Linear(config.n_embd, 4*config.n_embd) # Fully connected layer for the first part of the MLP which takes the input and projects it to 4 times the size of the input
|
| 68 |
+
self.gelu = nn.GELU(approximate='tanh') # GELU activation function
|
| 69 |
+
self.c_proj = nn.Linear(4*config.n_embd, config.n_embd) # Fully connected layer for the second part of the MLP which projects the output of the previous layer to the original size
|
| 70 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def forward(self,x):
|
| 74 |
+
x = self.c_fc(x)
|
| 75 |
+
x = self.gelu(x)
|
| 76 |
+
x = self.c_proj(x)
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# Block is basically a transformer block which consists of a self-attention mechanism and a feed-forward neural network (decoder part)
|
| 81 |
+
class Block(nn.Module):
|
| 82 |
+
|
| 83 |
+
def __init__(self,config):
|
| 84 |
+
super().__init__()
|
| 85 |
+
self.ln_1 = nn.LayerNorm(config.n_embd) # Layer normalization before the self-attention
|
| 86 |
+
self.attn = CausalSelfAttention(config) # Self-attention mechanism
|
| 87 |
+
self.ln_2 = nn.LayerNorm(config.n_embd) # Layer normalization after the self-attention
|
| 88 |
+
self.mlp = MLP(config) # Multi-layer perceptron for each position
|
| 89 |
+
|
| 90 |
+
# forward pass of the block, the input x is the sequence of embeddings and return is the updated sequence of embeddings
|
| 91 |
+
def forward(self,x):
|
| 92 |
+
x = x + self.attn(self.ln_1(x)) # residual connection followed by self-attention
|
| 93 |
+
# Our text first goes to ln_1, then to the self-attention mechanism, then to ln_2, and finally to the MLP
|
| 94 |
+
x = x + self.mlp(self.ln_2(x)) # residual connection followed by MLP (ffn)
|
| 95 |
+
# In attention 1024 sequence lined up communicated with each other & exchange info.
|
| 96 |
+
# Whereas MLP happens to every single token individually and there's no communication between tokens or exchange of information between tokens.
|
| 97 |
+
return x
|
| 98 |
+
|
| 99 |
+
@dataclass
|
| 100 |
+
class GPTConfig:
|
| 101 |
+
# block_size: int = 256 # maximum sequence length
|
| 102 |
+
# vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token
|
| 103 |
+
# n_layer: int = 12 # number of transformer layers
|
| 104 |
+
# n_head: int = 12 # number of heads in the multi-head attention mechanism
|
| 105 |
+
# n_embd: int = 768 # embedding dimension of each token
|
| 106 |
+
|
| 107 |
+
# # changed the default values of the parameters
|
| 108 |
+
block_size: int = 256 # maximum sequence length
|
| 109 |
+
vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token
|
| 110 |
+
n_layer: int = 6 # number of transformer layers
|
| 111 |
+
n_head: int = 6 # number of heads in the multi-head attention mechanism
|
| 112 |
+
n_embd: int = 768 # embedding dimension of each token
|
| 113 |
+
|
| 114 |
+
class GPT(nn.Module): # Kind of skeleton of the model
|
| 115 |
+
|
| 116 |
+
def __init__(self,config):
|
| 117 |
+
super().__init__()
|
| 118 |
+
self.config = config
|
| 119 |
+
|
| 120 |
+
# transformer is the main container and it have further sub-modules like wte, wpe, h, ln_f
|
| 121 |
+
self.transformer = nn.ModuleDict(dict(
|
| 122 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd), # token embedding weights
|
| 123 |
+
wpe = nn.Embedding(config.block_size, config.n_embd), # positional embedding weights
|
| 124 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), # transformer blocks as a list of n_layer (h is hidden layer)
|
| 125 |
+
ln_f = nn.LayerNorm(config.n_embd), # final layer normalization before the softmax
|
| 126 |
+
))
|
| 127 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias = False) # language model head is a linear layer with vocab_size output
|
| 128 |
+
|
| 129 |
+
# Weight sharing scheme
|
| 130 |
+
self.transformer.wte.weight = self.lm_head.weight # weight tying the token embeddings with the pre-softmax linear transformation, using this we saved 40m parameters
|
| 131 |
+
|
| 132 |
+
# init parameters
|
| 133 |
+
self.apply(self._init_weights) # initializing the weights of the model
|
| 134 |
+
|
| 135 |
+
def _init_weights(self, module):
|
| 136 |
+
if isinstance(module, nn.Linear):
|
| 137 |
+
std = 0.02
|
| 138 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
| 139 |
+
std *= (2*self.config.n_layer)**-0.5 # scale by the number of layers
|
| 140 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = std) # initializing the weights of the linear layer with normal distribution
|
| 141 |
+
if module.bias is not None:
|
| 142 |
+
torch.nn.init.zeros_(module.bias) # initializing the bias of the linear layer with zeros
|
| 143 |
+
elif isinstance(module, nn.Embedding):
|
| 144 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def forward(self,idx, targets= None):
|
| 148 |
+
# idx is of shape [batch_size, sequence_length] (B,T)
|
| 149 |
+
B,T = idx.size() # batch size and sequence length
|
| 150 |
+
assert T<=self.config.block_size ,f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
| 151 |
+
|
| 152 |
+
# forward the token and position embeddings
|
| 153 |
+
pos = torch.arange(0, T, dtype = torch.long, device =idx.device) # tensor of shape [T]
|
| 154 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
| 155 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B,T,n_embd)
|
| 156 |
+
x = tok_emb + pos_emb
|
| 157 |
+
|
| 158 |
+
# forward the blocks of the transformer
|
| 159 |
+
for block in self.transformer.h:
|
| 160 |
+
x = block(x)
|
| 161 |
+
# Forward the final layernorm and the classifier
|
| 162 |
+
x = self.transformer.ln_f(x)
|
| 163 |
+
logits = self.lm_head(x) # (B,T,vocab_size)
|
| 164 |
+
loss = None
|
| 165 |
+
if targets is not None:
|
| 166 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) # Cross-entropy flattens out the 3D (B,T,vocab_size) tensor to 2D
|
| 167 |
+
# (B*T,vocab_size) tensor, It also flattens out the target tensor to 1D tensor
|
| 168 |
+
return logits , loss
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@classmethod
|
| 172 |
+
def from_pretrained(cls, model_type):
|
| 173 |
+
"""Load pretrained GPT2 model weights from huggingface"""
|
| 174 |
+
|
| 175 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} # Checking if the model type is valid
|
| 176 |
+
|
| 177 |
+
print("Loading weights from pretrained gpt: %s" %model_type)
|
| 178 |
+
from transformers import GPT2LMHeadModel
|
| 179 |
+
# n_layer, n_head, and n_embd are determined by the model type
|
| 180 |
+
|
| 181 |
+
config_args = {
|
| 182 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M parameters
|
| 183 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M parameters
|
| 184 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M parameters
|
| 185 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M parameters
|
| 186 |
+
}[model_type]
|
| 187 |
+
|
| 188 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
| 189 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoint
|
| 190 |
+
|
| 191 |
+
# create a from-scratch initialized minGPT model
|
| 192 |
+
config = GPTConfig(**config_args)
|
| 193 |
+
model = GPT(config)
|
| 194 |
+
sd = model.state_dict() # state_dict is the model weights
|
| 195 |
+
sd_keys = sd.keys() # keys are the names of the weights
|
| 196 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer key, not parameters of the model
|
| 197 |
+
|
| 198 |
+
# init a huggingface/transformers model
|
| 199 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
| 200 |
+
sd_hf = model_hf.state_dict()
|
| 201 |
+
|
| 202 |
+
# copy while ensuring all of the parameters are aligned correctly and matches in names and shapes
|
| 203 |
+
sd_keys_hf = sd_hf.keys()
|
| 204 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
| 205 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
| 206 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
| 207 |
+
|
| 208 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
| 209 |
+
# this means that we have to transpose these weights when we import them
|
| 210 |
+
# missing in sd_keys: lm_head.weight
|
| 211 |
+
|
| 212 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
| 213 |
+
for k in sd_keys_hf:
|
| 214 |
+
if any(k.endswith(w) for w in transposed):
|
| 215 |
+
# special treatment for the Conv1D weights we need to transpose
|
| 216 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
| 217 |
+
with torch.no_grad():
|
| 218 |
+
sd[k].copy_(sd_hf[k].t())
|
| 219 |
+
else:
|
| 220 |
+
# vanilla copy over the other parameters
|
| 221 |
+
assert sd_hf[k].shape == sd[k].shape
|
| 222 |
+
with torch.no_grad():
|
| 223 |
+
sd[k].copy_(sd_hf[k])
|
| 224 |
+
|
| 225 |
+
return model # return the model with the pretrained weights
|
| 226 |
+
|
| 227 |
+
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
| 228 |
+
# start with all of the candidate parameters (that require gradients)
|
| 229 |
+
param_dict = {pn: p for pn, p in self.named_parameters()} # named parameters
|
| 230 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # only parameters that require gradients
|
| 231 |
+
|
| 232 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
| 233 |
+
# i.e. all weight tensors in matmuls + embeddings, all biases and layernorm don't.
|
| 234 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] # weight tensors in matmuls + embeddings
|
| 235 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] # biases and layernorm
|
| 236 |
+
optim_groups = [
|
| 237 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
| 238 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
| 239 |
+
]
|
| 240 |
+
|
| 241 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
| 242 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
| 243 |
+
if master_process:
|
| 244 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
| 245 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
| 246 |
+
# Create AdamW optimizer and use the fused version if it is available
|
| 247 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters # check if fused is available in AdamW
|
| 248 |
+
use_fused = fused_available and device_type == "cuda"
|
| 249 |
+
if master_process:
|
| 250 |
+
print(f"using fused AdamW: {use_fused}")
|
| 251 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
| 252 |
+
return optimizer
|