--- base_model: Qwen/Qwen2.5-0.5B-Instruct datasets: - generator library_name: peft license: apache-2.0 tags: - trl - sft - generated_from_trainer model-index: - name: trained_model results: [] --- # trained_model This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.5432 - Bertscore Precision: 0.9305 - Bertscore Recall: 0.9338 - Bertscore F1: 0.9321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:------:|:----:|:---------------:|:-------------------:|:----------------:|:------------:| | No log | 0.9664 | 18 | 1.1003 | 0.8802 | 0.8897 | 0.8849 | | 1.7123 | 1.9866 | 37 | 0.6787 | 0.9207 | 0.9228 | 0.9218 | | 1.7123 | 2.9530 | 55 | 0.5895 | 0.9300 | 0.9330 | 0.9315 | | 0.5828 | 3.9732 | 74 | 0.5516 | 0.9330 | 0.9355 | 0.9342 | | 0.4501 | 4.8322 | 90 | 0.5432 | 0.9305 | 0.9338 | 0.9321 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.5.1+cpu - Datasets 3.0.1 - Tokenizers 0.20.0