--- license: bsd-3-clause base_model: LongSafari/hyenadna-large-1m-seqlen-hf tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: hyenadna-large-1m-seqlen-hf_ft_BioS45_1kbpHG19_DHSs_H3K27AC results: [] --- # hyenadna-large-1m-seqlen-hf_ft_BioS45_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [LongSafari/hyenadna-large-1m-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4630 - F1 Score: 0.8133 - Precision: 0.7796 - Recall: 0.85 - Accuracy: 0.7964 - Auc: 0.8733 - Prc: 0.8740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.5578 | 0.2103 | 500 | 0.5077 | 0.7339 | 0.8087 | 0.6718 | 0.7459 | 0.8407 | 0.8258 | | 0.5127 | 0.4207 | 1000 | 0.4832 | 0.7813 | 0.7861 | 0.7766 | 0.7732 | 0.8460 | 0.8411 | | 0.4843 | 0.6310 | 1500 | 0.5096 | 0.7670 | 0.8214 | 0.7194 | 0.7720 | 0.8533 | 0.8519 | | 0.4833 | 0.8414 | 2000 | 0.4942 | 0.8042 | 0.7317 | 0.8927 | 0.7732 | 0.8633 | 0.8521 | | 0.4748 | 1.0517 | 2500 | 0.4991 | 0.7792 | 0.7997 | 0.7597 | 0.7753 | 0.8581 | 0.8511 | | 0.4723 | 1.2621 | 3000 | 0.4819 | 0.7833 | 0.8276 | 0.7435 | 0.7854 | 0.8618 | 0.8531 | | 0.474 | 1.4724 | 3500 | 0.4547 | 0.8026 | 0.8003 | 0.8048 | 0.7934 | 0.8717 | 0.8655 | | 0.4531 | 1.6828 | 4000 | 0.4560 | 0.8197 | 0.7537 | 0.8984 | 0.7939 | 0.8696 | 0.8629 | | 0.4601 | 1.8931 | 4500 | 0.4601 | 0.8135 | 0.7554 | 0.8815 | 0.7892 | 0.8658 | 0.8569 | | 0.441 | 2.1035 | 5000 | 0.4680 | 0.8103 | 0.7545 | 0.875 | 0.7863 | 0.8610 | 0.8497 | | 0.4267 | 2.3138 | 5500 | 0.4784 | 0.8150 | 0.7775 | 0.8565 | 0.7972 | 0.8705 | 0.8622 | | 0.4336 | 2.5242 | 6000 | 0.4562 | 0.8032 | 0.7891 | 0.8177 | 0.7909 | 0.8684 | 0.8590 | | 0.446 | 2.7345 | 6500 | 0.4630 | 0.8133 | 0.7796 | 0.85 | 0.7964 | 0.8733 | 0.8740 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0