--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ts_tg results: [] --- # ts_tg This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0516 - Accuracy: 0.8517 - F1: 0.8759 - Precision: 0.8996 - Recall: 0.8533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 202 | 0.1370 | 0.5242 | 0.6378 | 0.8129 | 0.5248 | | No log | 2.0 | 404 | 0.0857 | 0.6877 | 0.7700 | 0.8749 | 0.6875 | | 0.1567 | 3.0 | 606 | 0.0667 | 0.7810 | 0.8331 | 0.8929 | 0.7809 | | 0.1567 | 4.0 | 808 | 0.0593 | 0.8145 | 0.8525 | 0.8947 | 0.8142 | | 0.0566 | 5.0 | 1010 | 0.0554 | 0.8406 | 0.8668 | 0.8926 | 0.8425 | | 0.0566 | 6.0 | 1212 | 0.0529 | 0.8437 | 0.8718 | 0.8994 | 0.8459 | | 0.0566 | 7.0 | 1414 | 0.0522 | 0.8474 | 0.8737 | 0.8992 | 0.8496 | | 0.0383 | 8.0 | 1616 | 0.0516 | 0.8517 | 0.8759 | 0.8996 | 0.8533 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1