import gc import math import multiprocessing import os import traceback from datetime import datetime from io import BytesIO from itertools import permutations from multiprocessing.pool import Pool from pathlib import Path from urllib.parse import quote_plus import numpy as np import nltk import torch from PIL.Image import Image from diffusers import DiffusionPipeline, StableDiffusionXLInpaintPipeline from diffusers.utils import load_image from fastapi import FastAPI from fastapi.middleware.gzip import GZipMiddleware from loguru import logger from starlette.middleware.cors import CORSMiddleware from starlette.responses import FileResponse from starlette.responses import JSONResponse from env import BUCKET_PATH, BUCKET_NAME from stable_diffusion_server.bucket_api import check_if_blob_exists, upload_to_bucket pipe = DiffusionPipeline.from_pretrained( "models/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16, use_safetensors=True, variant="fp16", # safety_checker=None, ) # todo try torch_dtype=bfloat16 pipe.watermark = None pipe.to("cuda") refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=pipe.text_encoder_2, vae=pipe.vae, torch_dtype=torch.bfloat16, # safer to use bfloat? use_safetensors=True, variant="fp16", #remember not to download the big model ) refiner.watermark = None refiner.to("cuda") # {'scheduler', 'text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'unet', 'vae'} can be passed in from existing model inpaintpipe = StableDiffusionXLInpaintPipeline.from_pretrained( "models/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16, variant="fp16", use_safetensors=True, scheduler=pipe.scheduler, text_encoder=pipe.text_encoder, text_encoder_2=pipe.text_encoder_2, tokenizer=pipe.tokenizer, tokenizer_2=pipe.tokenizer_2, unet=pipe.unet, vae=pipe.vae, # load_connected_pipeline= ) # # switch out to save gpu mem # del inpaintpipe.vae # del inpaintpipe.text_encoder_2 # del inpaintpipe.text_encoder # del inpaintpipe.scheduler # del inpaintpipe.tokenizer # del inpaintpipe.tokenizer_2 # del inpaintpipe.unet # inpaintpipe.vae = pipe.vae # inpaintpipe.text_encoder_2 = pipe.text_encoder_2 # inpaintpipe.text_encoder = pipe.text_encoder # inpaintpipe.scheduler = pipe.scheduler # inpaintpipe.tokenizer = pipe.tokenizer # inpaintpipe.tokenizer_2 = pipe.tokenizer_2 # inpaintpipe.unet = pipe.unet # todo this should work # inpaintpipe = StableDiffusionXLInpaintPipeline( # construct an inpainter using the existing model # vae=pipe.vae, # text_encoder_2=pipe.text_encoder_2, # text_encoder=pipe.text_encoder, # unet=pipe.unet, # scheduler=pipe.scheduler, # tokenizer=pipe.tokenizer, # tokenizer_2=pipe.tokenizer_2, # requires_aesthetics_score=False, # ) inpaintpipe.to("cuda") inpaintpipe.watermark = None # inpaintpipe.register_to_config(requires_aesthetics_score=False) inpaint_refiner = StableDiffusionXLInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=inpaintpipe.text_encoder_2, vae=inpaintpipe.vae, torch_dtype=torch.bfloat16, use_safetensors=True, variant="fp16", tokenizer_2=refiner.tokenizer_2, tokenizer=refiner.tokenizer, scheduler=refiner.scheduler, text_encoder=refiner.text_encoder, unet=refiner.unet, ) # del inpaint_refiner.vae # del inpaint_refiner.text_encoder_2 # del inpaint_refiner.text_encoder # del inpaint_refiner.scheduler # del inpaint_refiner.tokenizer # del inpaint_refiner.tokenizer_2 # del inpaint_refiner.unet # inpaint_refiner.vae = inpaintpipe.vae # inpaint_refiner.text_encoder_2 = inpaintpipe.text_encoder_2 # # inpaint_refiner.text_encoder = refiner.text_encoder # inpaint_refiner.scheduler = refiner.scheduler # inpaint_refiner.tokenizer = refiner.tokenizer # inpaint_refiner.tokenizer_2 = refiner.tokenizer_2 # inpaint_refiner.unet = refiner.unet # inpaint_refiner = StableDiffusionXLInpaintPipeline( # text_encoder_2=inpaintpipe.text_encoder_2, # vae=inpaintpipe.vae, # # the rest from the existing refiner # tokenizer_2=refiner.tokenizer_2, # tokenizer=refiner.tokenizer, # scheduler=refiner.scheduler, # text_encoder=refiner.text_encoder, # unet=refiner.unet, # requires_aesthetics_score=False, # ) inpaint_refiner.to("cuda") inpaint_refiner.watermark = None # inpaint_refiner.register_to_config(requires_aesthetics_score=False) n_steps = 40 high_noise_frac = 0.8 # if using torch < 2.0 # pipe.enable_xformers_memory_efficient_attention() # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # this can cause errors on some inputs so consider disabling it pipe.unet = torch.compile(pipe.unet) refiner.unet = torch.compile(refiner.unet)#, mode="reduce-overhead", fullgraph=True) # compile the inpainters - todo reuse the other unets? swap out the models for others/del them so they share models and can be swapped efficiently inpaintpipe.unet = pipe.unet inpaint_refiner.unet = refiner.unet # inpaintpipe.unet = torch.compile(inpaintpipe.unet) # inpaint_refiner.unet = torch.compile(inpaint_refiner.unet) app = FastAPI( openapi_url="/static/openapi.json", docs_url="/swagger-docs", redoc_url="/redoc", title="Generate Images Netwrck API", description="Character Chat API", # root_path="https://api.text-generator.io", version="1", ) app.add_middleware(GZipMiddleware, minimum_size=1000) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) stopwords = nltk.corpus.stopwords.words("english") @app.get("/make_image") def make_image(prompt: str, save_path: str = ""): if Path(save_path).exists(): return FileResponse(save_path, media_type="image/png") image = pipe(prompt=prompt).images[0] if not save_path: save_path = f"images/{prompt}.png" image.save(save_path) return FileResponse(save_path, media_type="image/png") @app.get("/create_and_upload_image") def create_and_upload_image(prompt: str, width: int=1024, height:int=1024, save_path: str = ""): path_components = save_path.split("/")[0:-1] final_name = save_path.split("/")[-1] if not path_components: path_components = [] save_path = '/'.join(path_components) + quote_plus(final_name) path = get_image_or_create_upload_to_cloud_storage(prompt, width, height, save_path) return JSONResponse({"path": path}) @app.get("/inpaint_and_upload_image") def inpaint_and_upload_image(prompt: str, image_url:str, mask_url:str, save_path: str = ""): path_components = save_path.split("/")[0:-1] final_name = save_path.split("/")[-1] if not path_components: path_components = [] save_path = '/'.join(path_components) + quote_plus(final_name) path = get_image_or_inpaint_upload_to_cloud_storage(prompt, image_url, mask_url, save_path) return JSONResponse({"path": path}) def get_image_or_create_upload_to_cloud_storage(prompt:str,width:int, height:int, save_path:str): prompt = shorten_too_long_text(prompt) save_path = shorten_too_long_text(save_path) # check exists - todo cache this if check_if_blob_exists(save_path): return f"https://{BUCKET_NAME}/{BUCKET_PATH}/{save_path}" bio = create_image_from_prompt(prompt, width, height) if bio is None: return None # error thrown in pool link = upload_to_bucket(save_path, bio, is_bytesio=True) return link def get_image_or_inpaint_upload_to_cloud_storage(prompt:str, image_url:str, mask_url:str, save_path:str): prompt = shorten_too_long_text(prompt) save_path = shorten_too_long_text(save_path) # check exists - todo cache this if check_if_blob_exists(save_path): return f"https://{BUCKET_NAME}/{BUCKET_PATH}/{save_path}" bio = inpaint_image_from_prompt(prompt, image_url, mask_url) if bio is None: return None # error thrown in pool link = upload_to_bucket(save_path, bio, is_bytesio=True) return link # multiprocessing.set_start_method('spawn', True) # processes_pool = Pool(1) # cant do too much at once or OOM errors happen # def create_image_from_prompt_sync(prompt): # """have to call this sync to avoid OOM errors""" # return processes_pool.apply_async(create_image_from_prompt, args=(prompt,), ).wait() def create_image_from_prompt(prompt, width, height): # round width and height down to multiple of 64 block_width = width - (width % 64) block_height = height - (height % 64) prompt = shorten_too_long_text(prompt) # image = pipe(prompt=prompt).images[0] try: image = pipe(prompt=prompt, width=block_width, height=block_height, # denoising_end=high_noise_frac, # output_type='latent', # height=512, # width=512, num_inference_steps=50).images[0] # normally uses 50 steps except Exception as e: # try rm stopwords + half the prompt # todo try prompt permutations logger.info(f"trying to shorten prompt of length {len(prompt)}") prompt = ' '.join((word for word in prompt if word not in stopwords)) prompts = prompt.split() prompt = ' '.join(prompts[:len(prompts) // 2]) logger.info(f"shortened prompt to: {len(prompt)}") image = None if prompt: try: image = pipe(prompt=prompt, width=block_width, height=block_height, # denoising_end=high_noise_frac, # output_type='latent', # height=512, # width=512, num_inference_steps=50).images[0] # normally uses 50 steps except Exception as e: # logger.info("trying to permute prompt") # # try two swaps of the prompt/permutations # prompt = prompt.split() # prompt = ' '.join(permutations(prompt, 2).__next__()) logger.info(f"trying to shorten prompt of length {len(prompt)}") prompt = ' '.join((word for word in prompt if word not in stopwords)) prompts = prompt.split() prompt = ' '.join(prompts[:len(prompts) // 2]) logger.info(f"shortened prompt to: {len(prompt)}") try: image = pipe(prompt=prompt, width=block_width, height=block_height, # denoising_end=high_noise_frac, # output_type='latent', # dont need latent yet - we refine the image at full res # height=512, # width=512, num_inference_steps=50).images[0] # normally uses 50 steps except Exception as e: # just error out traceback.print_exc() raise e # logger.info("restarting server to fix cuda issues (device side asserts)") # todo fix device side asserts instead of restart to fix # todo only restart the correct gunicorn # this could be really annoying if your running other gunicorns on your machine which also get restarted # os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`") # os.system("kill -1 `pgrep gunicorn`") # todo refine # if image != None: # image = refiner( # prompt=prompt, # # width=block_width, # # height=block_height, # num_inference_steps=n_steps, # # denoising_start=high_noise_frac, # image=image, # ).images[0] if width != block_width or height != block_height: # resize to original size width/height # find aspect ratio to scale up to that covers the original img input width/height scale_up_ratio = max(width / block_width, height / block_height) image = image.resize((math.ceil(block_width * scale_up_ratio), math.ceil(height * scale_up_ratio))) # crop image to original size image = image.crop((0, 0, width, height)) # try: # # gc.collect() # torch.cuda.empty_cache() # except Exception as e: # traceback.print_exc() # logger.info("restarting server to fix cuda issues (device side asserts)") # # todo fix device side asserts instead of restart to fix # # todo only restart the correct gunicorn # # this could be really annoying if your running other gunicorns on your machine which also get restarted # os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`") # os.system("kill -1 `pgrep gunicorn`") # save as bytesio bs = BytesIO() bright_count = np.sum(np.array(image) > 0) if bright_count == 0: # we have a black image, this is an error likely we need a restart logger.info("restarting server to fix cuda issues (device side asserts)") # # todo fix device side asserts instead of restart to fix # # todo only restart the correct gunicorn # # this could be really annoying if your running other gunicorns on your machine which also get restarted os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`") os.system("kill -1 `pgrep gunicorn`") os.system("/usr/bin/bash kill -SIGHUP `pgrep uvicorn`") os.system("kill -1 `pgrep uvicorn`") return None image.save(bs, quality=85, optimize=True, format="webp") bio = bs.getvalue() # touch progress.txt file - if we dont do this we get restarted by supervisor/other processes for reliability with open("progress.txt", "w") as f: current_time = datetime.now().strftime("%H:%M:%S") f.write(f"{current_time}") return bio def inpaint_image_from_prompt(prompt, image_url: str, mask_url: str): prompt = shorten_too_long_text(prompt) # image = pipe(prompt=prompt).images[0] init_image = load_image(image_url).convert("RGB") mask_image = load_image(mask_url).convert("RGB") # why rgb for a 1 channel mask? num_inference_steps = 75 high_noise_frac = 0.7 try: image = inpaintpipe( prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=num_inference_steps, denoising_start=high_noise_frac, output_type="latent", ).images[0] # normally uses 50 steps except Exception as e: # try rm stopwords + half the prompt # todo try prompt permutations logger.info(f"trying to shorten prompt of length {len(prompt)}") prompt = ' '.join((word for word in prompt if word not in stopwords)) prompts = prompt.split() prompt = ' '.join(prompts[:len(prompts) // 2]) logger.info(f"shortened prompt to: {len(prompt)}") image = None if prompt: try: image = pipe( prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=num_inference_steps, denoising_start=high_noise_frac, output_type="latent", ).images[0] # normally uses 50 steps except Exception as e: # logger.info("trying to permute prompt") # # try two swaps of the prompt/permutations # prompt = prompt.split() # prompt = ' '.join(permutations(prompt, 2).__next__()) logger.info(f"trying to shorten prompt of length {len(prompt)}") prompt = ' '.join((word for word in prompt if word not in stopwords)) prompts = prompt.split() prompt = ' '.join(prompts[:len(prompts) // 2]) logger.info(f"shortened prompt to: {len(prompt)}") try: image = inpaintpipe( prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=num_inference_steps, denoising_start=high_noise_frac, output_type="latent", ).images[0] # normally uses 50 steps except Exception as e: # just error out traceback.print_exc() raise e # logger.info("restarting server to fix cuda issues (device side asserts)") # todo fix device side asserts instead of restart to fix # todo only restart the correct gunicorn # this could be really annoying if your running other gunicorns on your machine which also get restarted # os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`") # os.system("kill -1 `pgrep gunicorn`") if image != None: image = inpaint_refiner( prompt=prompt, image=image, mask_image=mask_image, num_inference_steps=num_inference_steps, denoising_start=high_noise_frac, ).images[0] # try: # # gc.collect() # torch.cuda.empty_cache() # except Exception as e: # traceback.print_exc() # logger.info("restarting server to fix cuda issues (device side asserts)") # # todo fix device side asserts instead of restart to fix # # todo only restart the correct gunicorn # # this could be really annoying if your running other gunicorns on your machine which also get restarted # os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`") # os.system("kill -1 `pgrep gunicorn`") # save as bytesio bs = BytesIO() bright_count = np.sum(np.array(image) > 0) if bright_count == 0: # we have a black image, this is an error likely we need a restart logger.info("restarting server to fix cuda issues (device side asserts)") # # todo fix device side asserts instead of restart to fix # # todo only restart the correct gunicorn # # this could be really annoying if your running other gunicorns on your machine which also get restarted os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`") os.system("kill -1 `pgrep gunicorn`") os.system("/usr/bin/bash kill -SIGHUP `pgrep uvicorn`") os.system("kill -1 `pgrep uvicorn`") return None image.save(bs, quality=85, optimize=True, format="webp") bio = bs.getvalue() # touch progress.txt file - if we dont do this we get restarted by supervisor/other processes for reliability with open("progress.txt", "w") as f: current_time = datetime.now().strftime("%H:%M:%S") f.write(f"{current_time}") return bio def shorten_too_long_text(prompt): if len(prompt) > 200: # remove stopwords prompt = prompt.split() # todo also split hyphens prompt = ' '.join((word for word in prompt if word not in stopwords)) if len(prompt) > 200: prompt = prompt[:200] return prompt # image = pipe(prompt=prompt).images[0] # # image.save("test.png") # save all images # for i, image in enumerate(images): # image.save(f"{i}.png")