from pathlib import Path import numpy as np import requests import torch from PIL import Image from io import BytesIO # from diffusers import StableDiffusionImg2ImgPipeline # device = "cuda" # model_id_or_path = "runwayml/stable-diffusion-v1-5" # # model_id_or_path = "models/stable-diffusion-xl-base-0.9" # pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16, variant="fp16", safety_checker=None) # pipe = pipe.to(device) from diffusers import StableDiffusionXLImg2ImgPipeline from diffusers.utils import load_image from stable_diffusion_server.utils import log_time pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", # "models/stable-diffusion-xl-base-0.9", torch_dtype = torch.float16, use_safetensors=True, variant="fp16", ) pipe = pipe.to("cuda") # # "LayerNormKernelImpl" not implemented for 'Half' error if its on cpu it cant do fp16 # idea composite: and re prompt img-img to support different sizes # url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" # # response = requests.get(url) # init_image = Image.open(BytesIO(response.content)).convert("RGB") # init_image = init_image.resize((768, 512)) # successfully inpaints a deleted area strength=0.75 # init_image = Image.open("/mnt/c/Users/leepenkman/Pictures/aiart/ainostalgic-colorful-relaxing-chill-realistic-cartoon-Charcoal-illustration-fantasy-fauvist-abstract-impressionist-watercolor-painting-Background-location-scenery-amazing-wonderful-Dog-Shelter-Worker-Dog.webp").convert("RGB") # redo something? strength 1 # init_image = Image.open("/home/lee/code/sdif/mask.png").convert("RGB") init_image = Image.open("/mnt/c/Users/leepenkman/Pictures/dogstretch.png").convert("RGB") # init_image = Image.open("/mnt/c/Users/leepenkman/Pictures/dogcenter.png").convert("RGB") # init_image = init_image.resize((1080, 1920)) init_image = init_image.resize((1920, 1080)) # init_image = init_image.resize((1024, 1024)) prompt = "A fantasy landscape, trending on artstation, beautiful amazing unreal surreal gorgeous impressionism" prompt = "mouth open nostalgic colorful relaxing chill realistic cartoon Charcoal illustration fantasy fauvist abstract impressionist watercolor painting Background location scenery amazing wonderful Dog Shelter Worker Dog" # images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images # images[0].save("fantasy_landscape.png") # # # url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" # # init_image = load_image(url).convert("RGB") # prompt = "a photo of an astronaut riding a horse on mars" study_dir = "images/study2" Path(study_dir).mkdir(parents=True, exist_ok=True) with log_time("img2img"): with torch.inference_mode(): # for strength in range(.1, 1, .1): for strength in np.linspace(.1, 1, 10): image = pipe(prompt=prompt, image=init_image, strength=strength, guidance_scale=7.6).images[0] image.save( study_dir + "/fantasy_dogimgimgdogstretchopening" + str(strength) + "guidance_scale" + str(7.6) + ".png") # # for guidance_scale in range(1, 10, .5): # for guidance_scale in np.linspace(1, 100, 10): # image = pipe(prompt=prompt, image=init_image, strength=strength, guidance_scale=guidance_scale).images[0] # image.save("images/study/fantasy_dogimgimgdogstretch" + str(strength) + "guidance_scale" + str(guidance_scale) + ".png") # image = pipe(prompt, image=init_image, strength=0.2, guidance_scale=7.5).images[0] # image.save("images/fantasy_dogimgimgdogstretch.png") # image.save("images/fantasy_dogimgimgdogcenter.png")