import argparse, os, sys, glob import cv2 import torch import numpy as np from omegaconf import OmegaConf from PIL import Image from tqdm import tqdm, trange from imwatermark import WatermarkEncoder from itertools import islice from einops import rearrange from torchvision.utils import make_grid import time from pytorch_lightning import seed_everything from torch import autocast from contextlib import contextmanager, nullcontext from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import AutoFeatureExtractor # load safety scripts safety_model_id = "CompVis/stable-diffusion-safety-checker" safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def numpy_to_pil(images): """ Convert a numpy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def load_model_from_config(config, ckpt, verbose=False): print(f"Loading scripts from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model def put_watermark(img, wm_encoder=None): if wm_encoder is not None: img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) img = wm_encoder.encode(img, 'dwtDct') img = Image.fromarray(img[:, :, ::-1]) return img def load_replacement(x): try: hwc = x.shape y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) y = (np.array(y)/255.0).astype(x.dtype) assert y.shape == x.shape return y except Exception: return x def check_safety(x_image): safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) assert x_checked_image.shape[0] == len(has_nsfw_concept) for i in range(len(has_nsfw_concept)): if has_nsfw_concept[i]: x_checked_image[i] = load_replacement(x_checked_image[i]) return x_checked_image, has_nsfw_concept class StableDiffusion: def __init__(self): seed = 42 config = "configs/stable-diffusion/v1-inference.yaml" ckpt = "models/ldm/stable-diffusion-v4/model.ckpt" seed_everything(seed) config = OmegaConf.load(f"{config}") model = load_model_from_config(config, f"{ckpt}") self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.model = model.to(self.device) self.sampler = PLMSSampler(self.model) print("Finishing Model Deployment") def generatePics(self, opt): if opt.laion400m: print("Falling back to LAION 400M scripts...") opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml" opt.ckpt = "models/ldm/text2img-large/scripts.ckpt" opt.outdir = "outputs/txt2img-samples-laion400m" # if opt.plms: # sampler = PLMSSampler(self.model) # else: # sampler = DDIMSampler(self.model) os.makedirs(opt.outdir, exist_ok=True) outpath = opt.outdir wm = "StableDiffusionV1" wm_encoder = WatermarkEncoder() wm_encoder.set_watermark('bytes', wm.encode('utf-8')) batch_size = opt.n_samples n_rows = opt.n_rows if opt.n_rows > 0 else batch_size if not opt.from_file: prompt = opt.prompt assert prompt is not None data = [batch_size * [prompt]] else: print(f"reading prompts from {opt.from_file}") with open(opt.from_file, "r") as f: data = f.read().splitlines() data = list(chunk(data, batch_size)) # sample_path = os.path.join(outpath, "samples") # os.makedirs(sample_path, exist_ok=True) # base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 output_img_files = os.path.join(os.getcwd(), outpath, f'grid-{grid_count:04}.png') start_code = None if opt.fixed_code: start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=self.device) precision_scope = autocast if opt.precision == "autocast" else nullcontext with torch.no_grad(): with precision_scope("cuda"): with self.model.ema_scope(): tic = time.time() all_samples = list() for n in trange(opt.n_iter, desc="Sampling"): for prompts in tqdm(data, desc="data"): uc = None if opt.scale != 1.0: uc = self.model.get_learned_conditioning(batch_size * [""]) if isinstance(prompts, tuple): prompts = list(prompts) c = self.model.get_learned_conditioning(prompts) shape = [opt.C, opt.H // opt.f, opt.W // opt.f] samples_ddim, _ = self.sampler.sample(S=opt.ddim_steps, conditioning=c, batch_size=opt.n_samples, shape=shape, verbose=False, unconditional_guidance_scale=opt.scale, unconditional_conditioning=uc, eta=opt.ddim_eta, x_T=start_code) x_samples_ddim = self.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim) x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) # if not opt.skip_save: # for x_sample in x_checked_image_torch: # x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') # img = Image.fromarray(x_sample.astype(np.uint8)) # img = put_watermark(img, wm_encoder) # img.save(os.path.join(sample_path, f"{base_count:05}.png")) # base_count += 1 if not opt.skip_grid: all_samples.append(x_checked_image_torch) if not opt.skip_grid: # additionally, save as grid grid = torch.stack(all_samples, 0) grid = rearrange(grid, 'n b c h w -> (n b) c h w') grid = make_grid(grid, nrow=n_rows) # to image grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() img = Image.fromarray(grid.astype(np.uint8)) img = put_watermark(img, wm_encoder) img.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) grid_count += 1 toc = time.time() return output_img_files