PEFT
PyTorch
Safetensors
llama
Generated from Trainer
File size: 4,403 Bytes
eb046b2
5c229e2
 
5a12eee
5c229e2
 
 
 
 
5a12eee
 
eb046b2
5c229e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11237f3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---

base_model: pints-ai/1.5-Pints-16K-v0.1
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: tangledgroup/tangled-llama-pints-1.5b-v0.2-instruct
  results: []
datasets:
- tangledgroup/tangled-llama-pints-1.5b-v0.2-dataset
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml

base_model: pints-ai/1.5-Pints-16K-v0.1

model_type: AutoModelForCausalLM

tokenizer_type: AutoTokenizer



load_in_8bit: false

load_in_4bit: true

strict: false



datasets:

  - path: tangledgroup/tangled-llama-pints-1.5b-v0.2-dataset

    type: sharegpt

    conversation: chatml

chat_template: chatml

dataset_prepared_path:

val_set_size: 0.05

output_dir: ./outputs/qlora-out



adapter: qlora

lora_model_dir:



sequence_len: 16384

sample_packing: true

pad_to_sequence_len: true



lora_r: 32

lora_alpha: 16

lora_dropout: 0.05

lora_target_modules:

lora_target_linear: true

lora_fan_in_fan_out:



wandb_project:

wandb_entity:

wandb_watch:

wandb_name:

wandb_log_model:



gradient_accumulation_steps: 4

micro_batch_size: 2

num_epochs: 3

optimizer: paged_adamw_32bit

# optimizer: adamw_torch_fused

lr_scheduler: cosine

learning_rate: 0.0002



train_on_inputs: false

group_by_length: false

bf16: auto

fp16:

tf32: false



gradient_checkpointing: true

early_stopping_patience:

resume_from_checkpoint:

local_rank:

logging_steps: 1

xformers_attention:

flash_attention: true



loss_watchdog_threshold: 15.0

loss_watchdog_patience: 3



warmup_steps: 10

evals_per_epoch: 3

eval_table_size:

saves_per_epoch: 1

debug:

deepspeed:

weight_decay: 0.0

fsdp:

fsdp_config:

special_tokens:



plugins:

- axolotl.integrations.liger.LigerPlugin

liger_rope: true

liger_rms_norm: true

liger_swiglu: true

liger_fused_linear_cross_entropy: true

```

</details><br>

# outputs/qlora-out

This model is a fine-tuned version of [pints-ai/1.5-Pints-16K-v0.1](https://huggingface.co/pints-ai/1.5-Pints-16K-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9847

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10

- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1396        | 0.0011 | 1    | 1.1313          |
| 1.0777        | 0.3332 | 295  | 1.0278          |
| 1.0219        | 0.6665 | 590  | 1.0119          |
| 1.0006        | 0.9997 | 885  | 1.0020          |
| 1.0385        | 1.3307 | 1180 | 0.9954          |
| 0.9405        | 1.6639 | 1475 | 0.9902          |
| 0.9249        | 1.9972 | 1770 | 0.9867          |
| 0.9951        | 2.3282 | 2065 | 0.9856          |
| 0.9713        | 2.6616 | 2360 | 0.9848          |
| 0.9576        | 2.9949 | 2655 | 0.9847          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.4.1
- Datasets 2.21.0
- Tokenizers 0.19.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_tangledgroup__tangled-llama-pints-1.5b-v0.2-instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 4.66|
|IFEval (0-Shot)    |17.24|
|BBH (3-Shot)       | 4.08|
|MATH Lvl 5 (4-Shot)| 0.76|
|GPQA (0-shot)      | 0.00|
|MuSR (0-shot)      | 4.57|
|MMLU-PRO (5-shot)  | 1.30|