from functools import partial from transformers import AutoTokenizer from litgpt.tokenizer import Tokenizer from litdata import optimize, TokensLoader, StreamingDataset from utils import tokenize_fn from core_base_datasets import core_base_datasets from core_instruct_datasets import core_instruct_datasets tokenizer_path = '../tokenizer' seqs = [ (0, 1073741824, 4097, 4000), ] # # optimize datasets # for i, (min_len, max_len, block_size, subchunk_size) in enumerate(seqs): chunk_size = block_size * subchunk_size output_dir = f'../core-data-{i}-{min_len}-{max_len}-{block_size}-{subchunk_size}' outputs = optimize( fn=partial( tokenize_fn, min_len=min_len, max_len=max_len, hf_tokenizer=AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True, use_fast=True), tokenizer=Tokenizer(tokenizer_path), ), inputs=core_base_datasets + core_instruct_datasets, output_dir=output_dir, chunk_size=chunk_size, # Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk. num_workers=32, reorder_files=False, ## This is important to inform LitData that we are encoding contiguous 1D array (tokens). ## LitData skips storing metadata for each sample e.g all the tokens are concatenated to form one large tensor. # item_loader=TokensLoader(block_size=block_size), ) # # total number of chunks in datasets # for i, (min_len, max_len, block_size, subchunk_size) in enumerate(seqs): chunk_size = block_size * subchunk_size input_dir = f'../core-data-{i}-{min_len}-{max_len}-{block_size}-{subchunk_size}' dataset = StreamingDataset( input_dir=input_dir, item_loader=TokensLoader(block_size=block_size), ) print(f'{i=}, {min_len=}, {max_len=}, {block_size=}, {chunk_size=}, {len(dataset)=}, {len(dataset) * block_size=}') total_tokens = len(dataset) * block_size print(f'Total number of tokens in the optimized dataset {input_dir!r} is {total_tokens}') print()