|
roles_map = { |
|
'system': 'system', |
|
'user': 'user', |
|
'human': 'user', |
|
'assistant': 'assistant', |
|
'gpt': 'assistant', |
|
'AI': 'assistant', |
|
} |
|
|
|
|
|
pretrain_reasoning_datasets = [ |
|
|
|
|
|
|
|
|
|
{'kind': 'instruct', 'path': 'AtlasUnified/Atlas-Reasoning', 'data_files': 'reasoning.csv', 'transform': lambda r: [ |
|
{'role': 'user', 'content': r['Prompt']}, |
|
{'role': 'assistant', 'content': r['Step-by-step reasoning'] + '\n' + r['Solution']}, |
|
]}, |
|
|
|
*[ |
|
{'kind': 'instruct', 'path': 'AI-MO/NuminaMath-CoT', 'split': f'train[{i}%:{i + 10}%]', 'field': 'messages'} |
|
for i in range(0, 100, 10) |
|
], |
|
|
|
*[ |
|
{'kind': 'instruct', 'path': 'AI-MO/NuminaMath-TIR', 'split': f'train[{i}%:{i + 10}%]', 'field': 'messages'} |
|
for i in range(0, 100, 10) |
|
], |
|
|
|
|
|
|
|
|
|
|
|
{'kind': 'instruct', 'path': 'AlgorithmicResearchGroup/math_reasoning_autoformalization_track', 'transform': lambda r: [ |
|
{'role': 'user', 'content': r['informal_statement']}, |
|
{'role': 'assistant', 'content': r['informal_proof'] + '\n' + r['formal_proof']}, |
|
]}, |
|
|
|
{'kind': 'instruct', 'path': 'KingNish/reasoning-base-20k', 'transform': lambda r: [ |
|
{'role': 'user', 'content': r['user']}, |
|
{'role': 'assistant', 'content': r['reasoning'] + '\n' + r['assistant']}, |
|
]}, |
|
|
|
{'kind': 'instruct', 'path': 'Aarushhh/math-reasoning-10k', 'transform': lambda r: [ |
|
{'role': 'user', 'content': r['problem']}, |
|
{'role': 'assistant', 'content': r['plan'] + '\n' + r['solution']}, |
|
]}, |
|
|
|
|
|
|
|
|
|
|
|
*[ |
|
{'kind': 'instruct', 'path': 'ServiceNow-AI/R1-Distill-SFT', 'data_dir': 'v0', 'split': f'train[{i}%:{i + 10}%]', 'transform': lambda r: [ |
|
{'role': 'user', 'content': r['problem']}, |
|
{'role': 'assistant', 'content': r['reannotated_assistant_content']}, |
|
]} |
|
for i in range(0, 100, 10) |
|
], |
|
*[ |
|
{'kind': 'instruct', 'path': 'ServiceNow-AI/R1-Distill-SFT', 'data_dir': 'v1', 'split': f'train[{i}%:{i + 10}%]', 'transform': lambda r: r['reannotated_messages']} |
|
for i in range(0, 100, 10) |
|
], |
|
|
|
*[ |
|
{'kind': 'instruct', 'path': 'cognitivecomputations/dolphin-r1', 'data_files': 'dolphin-r1-reasoning-deepseek.jsonl', 'split': f'train[{i}%:{i + 10}%]', 'transform': lambda r: [ |
|
*r['messages'], |
|
|
|
{'role': 'assistant', 'content': (r.get('reasoning') or '') + (r.get('answer') or '')}, |
|
]} |
|
for i in range(0, 100, 10) |
|
], |
|
|
|
*[ |
|
{'kind': 'instruct', 'path': 'cognitivecomputations/dolphin-r1', 'data_files': 'dolphin-r1-reasoning-flash.jsonl', 'split': f'train[{i}%:{i + 10}%]', 'transform': lambda r: [ |
|
*r['messages'], |
|
|
|
{'role': 'assistant', 'content': (r.get('reasoning') or '') + (r.get('answer') or '')}, |
|
]} |
|
for i in range(0, 100, 10) |
|
], |
|
|
|
{'kind': 'instruct', 'path': 'open-thoughts/OpenThoughts-114k', 'split': 'train', 'field': 'conversations', 'transform': lambda msgs: [ |
|
{'role': roles_map[m['from']], 'content': m['value']} |
|
for m in msgs |
|
]}, |
|
|
|
{'kind': 'instruct', 'path': 'O1-OPEN/OpenO1-SFT', 'split': 'train', 'transform': lambda r: [ |
|
{'role': 'user', 'content': r['instruction']}, |
|
{'role': 'assistant', 'content': r['output']}, |
|
]}, |
|
|
|
{'kind': 'instruct', 'path': 'simplescaling/s1K', 'split': 'train', 'transform': lambda r: [ |
|
{'role': 'user', 'content': r['question']}, |
|
{'role': 'assistant', 'content': '<think>\n' + '\n'.join(r['thinking_trajectories']) + '\n</think>\n' + r['solution']}, |
|
]}, |
|
] |
|
|