File size: 4,562 Bytes
5b81e55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gc
from typing import Optional, Iterator, Callable
import torch
from datasets import load_dataset
from litgpt.tokenizer import Tokenizer
from transformers import AutoTokenizer
def batch_text_iterator(kind: str,
path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
keep_in_memory: bool=False,
revision: Optional[str]=None,
split: str='train',
num_proc: Optional[int]=None,
format: Optional[Callable|str]=None) -> Iterator[str]:
assert isinstance(format, str) or callable(format), f'{path=} {format=}'
assert kind == 'base'
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
keep_in_memory=keep_in_memory,
revision=revision,
split=split,
trust_remote_code=True,
num_proc=num_proc)
if callable(format):
for row in dataset:
text = format(row)
yield text
else:
for row in dataset:
text = format.format(**row)
yield text
del dataset
gc.collect()
def batch_chat_iterator(kind: str,
path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
keep_in_memory: bool=False,
revision: Optional[str]=None,
split: str='train',
num_proc: Optional[int]=None,
field: Optional[str]=None,
transform: Optional[Callable]=None) -> Iterator[list[dict[str, str]]]:
assert kind == 'instruct'
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
keep_in_memory=keep_in_memory,
revision=revision,
split=split,
trust_remote_code=True,
num_proc=num_proc)
if callable(transform):
for row in dataset:
if field:
messages = transform(row[field])
else:
messages = transform(row)
yield messages
else:
for row in dataset:
if field:
messages = row[field]
else:
raise ValueError(field)
yield messages
del dataset
gc.collect()
def tokenize_text_fn(dataset_config: dict, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
for text in batch_text_iterator(**dataset_config):
text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=True)
yield text_ids
def tokenize_chat_fn(dataset_config: dict, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
for messages in batch_chat_iterator(**dataset_config):
text: str = hf_tokenizer.apply_chat_template(messages, tokenize=False)
text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=False)
yield text_ids
def tokenize_fn(dataset_config: dict, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
if dataset_config['kind'] == 'base':
for text in batch_text_iterator(**dataset_config):
try:
text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=True)
except Exception as e:
print(f'Skip base raw: {e=} {type(text)=} {text=}')
continue
yield text_ids
elif dataset_config['kind'] == 'instruct':
for messages in batch_chat_iterator(**dataset_config):
try:
text: str = hf_tokenizer.apply_chat_template(messages, tokenize=False)
text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=False)
except Exception as e:
print(f'Skip instruct row: {e=} {type(messages)=} {messages=}')
continue
yield text_ids
else:
raise ValueError(dataset_config['kind'])
|