File size: 4,562 Bytes
5b81e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gc
from typing import Optional, Iterator, Callable

import torch
from datasets import load_dataset
from litgpt.tokenizer import Tokenizer
from transformers import AutoTokenizer


def batch_text_iterator(kind: str,
                        path: str,
                        name: Optional[str]=None,
                        data_dir: Optional[str]=None,
                        data_files: Optional[str]=None,
                        keep_in_memory: bool=False,
                        revision: Optional[str]=None,
                        split: str='train',
                        num_proc: Optional[int]=None,
                        format: Optional[Callable|str]=None) -> Iterator[str]:
    assert isinstance(format, str) or callable(format), f'{path=} {format=}'
    assert kind == 'base'

    dataset = load_dataset(path=path,
                           name=name,
                           data_dir=data_dir,
                           data_files=data_files,
                           keep_in_memory=keep_in_memory,
                           revision=revision,
                           split=split,
                           trust_remote_code=True,
                           num_proc=num_proc)

    if callable(format):
        for row in dataset:
            text = format(row)
            yield text
    else:
        for row in dataset:
            text = format.format(**row)
            yield text

    del dataset
    gc.collect()


def batch_chat_iterator(kind: str,
                        path: str,
                        name: Optional[str]=None,
                        data_dir: Optional[str]=None,
                        data_files: Optional[str]=None,
                        keep_in_memory: bool=False,
                        revision: Optional[str]=None,
                        split: str='train',
                        num_proc: Optional[int]=None,
                        field: Optional[str]=None,
                        transform: Optional[Callable]=None) -> Iterator[list[dict[str, str]]]:
    assert kind == 'instruct'

    dataset = load_dataset(path=path,
                           name=name,
                           data_dir=data_dir,
                           data_files=data_files,
                           keep_in_memory=keep_in_memory,
                           revision=revision,
                           split=split,
                           trust_remote_code=True,
                           num_proc=num_proc)

    if callable(transform):
        for row in dataset:
            if field:
                messages = transform(row[field])
            else:
                messages = transform(row)

            yield messages
    else:
        for row in dataset:
            if field:
                messages = row[field]
            else:
                raise ValueError(field)

            yield messages

    del dataset
    gc.collect()


def tokenize_text_fn(dataset_config: dict, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
    for text in batch_text_iterator(**dataset_config):
        text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=True)
        yield text_ids


def tokenize_chat_fn(dataset_config: dict, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
    for messages in batch_chat_iterator(**dataset_config):
        text: str = hf_tokenizer.apply_chat_template(messages, tokenize=False)
        text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=False)
        yield text_ids


def tokenize_fn(dataset_config: dict, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer) -> Iterator[torch.Tensor]:
    if dataset_config['kind'] == 'base':
        for text in batch_text_iterator(**dataset_config):
            try:
                text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=True)
            except Exception as e:
                print(f'Skip base raw: {e=} {type(text)=} {text=}')
                continue

            yield text_ids
    elif dataset_config['kind'] == 'instruct':
        for messages in batch_chat_iterator(**dataset_config):
            try:
                text: str = hf_tokenizer.apply_chat_template(messages, tokenize=False)
                text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=False)
            except Exception as e:
                print(f'Skip instruct row: {e=} {type(messages)=} {messages=}')
                continue

            yield text_ids
    else:
        raise ValueError(dataset_config['kind'])