--- base_model: FPTAI/vibert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: vi_fin_news results: [] --- # vi_fin_news This model is a fine-tuned version of [FPTAI/vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7477 - Accuracy: 0.9176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2248 | 1.0 | 1150 | 0.2021 | 0.9172 | | 0.182 | 2.0 | 2300 | 0.2216 | 0.9230 | | 0.1301 | 3.0 | 3450 | 0.2681 | 0.9181 | | 0.0985 | 4.0 | 4600 | 0.3468 | 0.9226 | | 0.0651 | 5.0 | 5750 | 0.5141 | 0.9070 | | 0.0332 | 6.0 | 6900 | 0.5732 | 0.9187 | | 0.0266 | 7.0 | 8050 | 0.5991 | 0.9161 | | 0.0129 | 8.0 | 9200 | 0.6872 | 0.9157 | | 0.0095 | 9.0 | 10350 | 0.7212 | 0.9187 | | 0.0023 | 10.0 | 11500 | 0.7477 | 0.9176 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3