import argparse import inspect import json import os import shutil from pathlib import Path from typing import Any, Dict, List, Optional import numpy as np import torch import transformers from datasets import load_dataset # from ..hparams import get_eval_args # from ..model import load_model, load_tokenizer from template import CHOICES, get_eval_template from tqdm import tqdm, trange from transformers import AutoTokenizer from transformers.utils import cached_file from vllm import LLM, SamplingParams # from ..data import get_template_and_fix_tokenizer SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"] data_abs_dir = Path(__file__).parent / "data" def create_dir(output_dir): if os.path.exists(output_dir): if not os.access(output_dir, os.W_OK): shutil.rmtree(output_dir) os.makedirs(output_dir) os.chmod(output_dir, 0o777) print("not write permission, makedir:", output_dir) else: print(f"{output_dir} exists!") else: os.makedirs(output_dir) os.chmod(output_dir, 0o777) print("makedir:", output_dir) class Evaluator: def __init__(self, args) -> None: # self.model_args, self.data_args, self.eval_args, finetuning_args = ( # get_eval_args(args) # ) self.args = args if not self.args.api: self.tokenizer = AutoTokenizer.from_pretrained(args.model_path) llm_args = { "model": args.model_path, "gpu_memory_utilization": 0.95, "trust_remote_code": True, "tensor_parallel_size": args.gpus_num, "dtype": "half", "max_model_len": 8192, "enforce_eager": True, } self.llm = LLM(**llm_args) self.sampling_params = SamplingParams( temperature=0, max_tokens=1024, top_p=0.95, stop_token_ids=[self.tokenizer.eos_token_id], logprobs=20, ) self.tokenizer.padding_side = ( "right" # avoid overflow issue in batched inference for llama2 ) # self.template = get_template_and_fix_tokenizer( # self.tokenizer, self.data_args.template # ) self.choice_inputs = [ self.tokenizer.encode(ch, add_special_tokens=False)[-1] for ch in CHOICES ] self.label_map = {} for label in ["A", "B", "C", "D"]: self.label_map[label] = self.tokenizer.convert_tokens_to_ids(label) self.eval_template = get_eval_template(args.lang) def get_client_res(self, example, open_ai_key=False): messages = example["input"] try: if open_ai_key: from openai import AzureOpenAI, OpenAI try: api_key = os.environ["OPENAI_API_KEY"] except KeyError: print("环境变量 OPENAI_API_KEY 未设置") api_key = "default_value" client = AzureOpenAI( api_key=api_key, api_version="2024-07-01-preview", azure_endpoint="https://zju-tablegpt.openai.azure.com/", max_retries=3, ) chat_response = client.chat.completions.create( model="gpt-4o", # model="gpt-4o-mini", messages=messages, top_p=0.95, temperature=0, max_tokens=1024, # stop_token_ids=[self.tokenizer.eos_token_id], logprobs=True, top_logprobs=5, timeout=40, ) else: # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8080/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="qwen2-7b-sft", messages=messages, top_p=0.3, temperature=0.1, max_tokens=1024, ) output = chat_response except Exception as e: print(f"An unexpected error occurred: {e}") output = None example["output"] = output return example def get_answer(self, output): import numpy as np candidate_logits = [] for label in ["A", "B", "C", "D"]: try: candidate_logits.append( output.outputs[0].logprobs[0][self.label_map[label]].logprob ) except: # If an option is not in the first 1000, set its logit to -100 # print( # "Warning: {} not found. Artificially adding log prob of -100.".format( # label # ) # ) candidate_logits.append(-100) # 全是-100 if len(set(candidate_logits)) == 1 and candidate_logits[0] == -100: print("Warning candidate_logits:", candidate_logits) return "N" candidate_logits = torch.tensor(candidate_logits) probs = torch.nn.functional.softmax( candidate_logits, dim=0, ).numpy() answer = {i: k for i, k in enumerate(["A", "B", "C", "D"])}[np.argmax(probs)] return answer def get_answer_gpt(self, chat_response): try: labels = ["A", "B", "C", "D"] top_logprobs = chat_response.choices[0].logprobs.content[0].top_logprobs for prob in top_logprobs: if prob.token in labels: answer = prob.token return answer return "Y" except Exception as e: print(f"get answer gpt error occurred: {e}") return "N" def eval(self) -> None: mapping = cached_file( path_or_repo_id=os.path.join(data_abs_dir, self.args.task), filename="mapping.json", ) with open(mapping, "r", encoding="utf-8") as f: categorys: Dict[str, Dict[str, str]] = json.load(f) category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS} pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0) results = {} for subject in pbar: if ( "trust_remote_code" in inspect.signature(load_dataset).parameters ): # for datasets==2.16.0 kwargs = {"trust_remote_code": True} else: kwargs = {} dataset = load_dataset( path=os.path.join(data_abs_dir, self.args.task), name=subject, **kwargs, ) pbar.set_postfix_str(categorys[subject]["name"]) inputs, outputs, labels = [], [], [] examples = [] for i in trange( len(dataset[args.split]), desc="Formatting batches", position=1, leave=False, ): support_set = ( dataset["train"] .shuffle() .select(range(min(self.args.n_shot, len(dataset["train"])))) ) messages = self.eval_template.format_example( target_data=dataset[self.args.split][i], support_set=support_set, subject_name=categorys[subject]["name"], ) if self.args.api: inp = messages[0:-1] inputs.append(inp) else: inp = self.tokenizer.apply_chat_template( messages[0:-1], tokenize=False, add_generation_prompt=True ) inputs.append(inp) labels.append(messages[-1]["content"]) examples.append({"input": inp, "label": messages[-1]["content"]}) if self.args.api: from joblib import Parallel, delayed examples = Parallel(n_jobs=24)( delayed(self.get_client_res)(example, open_ai_key=True) for example in tqdm(examples) ) # 请求错误的重新请求 llm_outputs = [] for example in examples: if example["output"]==None: example = self.get_client_res(example, open_ai_key=True) llm_outputs.append(example) # 多进程请求后label与output的顺序乱了,需要重置 labels = [] outputs = [] for example in llm_outputs: answer = self.get_answer_gpt(example["output"]) outputs.append(answer) labels.append(example["label"]) else: llm_outputs = self.llm.generate( inputs, sampling_params=self.sampling_params ) for output in llm_outputs: answer = self.get_answer(output) outputs.append(answer) corrects = np.array(outputs) == np.array(labels) print("正确率:",corrects.sum()/len(corrects)) category_name = categorys[subject]["category"] category_corrects[category_name] = np.concatenate( [category_corrects[category_name], corrects], axis=0 ) category_corrects["Average"] = np.concatenate( [category_corrects["Average"], corrects], axis=0 ) results[subject] = {str(i): outputs[i] for i in range(len(outputs))} pbar.close() self._save_results(category_corrects, results) def _save_results( self, category_corrects: Dict[str, np.ndarray], results: Dict[str, Dict[int, str]], ) -> None: score_info = "\n".join( [ "{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct)) for category_name, category_correct in category_corrects.items() if len(category_correct) ] ) print(score_info) if self.args.save_dir is not None: # os.makedirs(self.args.save_dir, exist_ok=True) create_dir(self.args.save_dir) with open( os.path.join(self.args.save_dir, f"results_{args.task}.json"), "w", encoding="utf-8", newline="\n", ) as f: json.dump(results, f, indent=2) with open( os.path.join(self.args.save_dir, f"results_{args.task}.log"), "w", encoding="utf-8", newline="\n", ) as f: f.write(score_info) def run_eval(args) -> None: evalutor = Evaluator(args) evalutor.eval() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, help="model name or path", default="/data0/pretrained-models/Qwen2-7B-Instruct", ) parser.add_argument( "--gpus_num", type=int, default=1, help="the number of GPUs you want to use." ) parser.add_argument( "--output_path", type=str, help="output path of your generation", default="output/result_mmlu.json", ) parser.add_argument( "--lang", type=str, help="prompt langauge", default="zh", choices=["zh", "en"] ) parser.add_argument("--api", action="store_true", help="infer api type") parser.add_argument( "--task", type=str, help="eval task", default="cmmlu", choices=["cmmlu", "mmlu", "ceval"], ) parser.add_argument( "--split", type=str, help="eval data split", default="test", choices=["test", "validation"], ) parser.add_argument("--n_shot", type=int, help="n shot", default=5) parser.add_argument("--seed", type=int, help="seed", default=42) parser.add_argument("--save_dir", type=str, help="save dir", default="output") args = parser.parse_args() os.environ["TOKENIZERS_PARALLELISM"] = "false" transformers.set_seed(args.seed) run_eval(args)