--- license: mit widget: - text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?" example_title: "Dialog example 1" - text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм" example_title: "Dialog example 2" - text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?" example_title: "Dialog example 3" --- This classification model is based on [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). The model should be used to produce relevance and specificity of the last message in the context of a dialogue. The labels explanation: - `relevance`: is the last message in the dialogue relevant in the context of the full dialogue - `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue The preferable length of the dialogue is 4 where the last message is needed to be estimated It is pretrained on corpus of dialog data from social networks and finetuned on [tinkoff-ai/context_similarity](https://huggingface.co/tinkoff-ai/context_similarity). The performance of the model on validation split [tinkoff-ai/context_similarity](https://huggingface.co/tinkoff-ai/context_similarity) (with the best thresholds for validation samples): | | f0.5 | ROC AUC | |:------------|-------:|----------:| | relevance | 0.82 | 0.74 | | specificity | 0.81 | 0.8 | The preferable usage: ```python # pip install transformers import transformers from transformers import AutoTokenizer, AutoModel import torch from typing import List, Dict tokenizer = AutoTokenizer.from_pretrained("tinkoff-ai/response-quality-classifier-tiny") model = AutoModel.from_pretrained("tinkoff-ai/response-quality-classifier-tiny") # model.cuda() context_3 = 'привет' context_2 = 'привет!' context_1 = 'как дела?' response = 'у меня все хорошо, а у тебя как?' sample = { 'context_3': context_3, 'context_2': context_2, 'context_1': context_1, 'response': response } SEP_TOKEN = '[SEP]' CLS_TOKEN = '[CLS]' RESPONSE_TOKEN = '[RESPONSE_TOKEN]' MAX_SEQ_LENGTH = 128 sorted_dialog_columns = ['context_3', 'context_2', 'context_1', 'response'] def tokenize_dialog_data( tokenizer: transformers.PreTrainedTokenizer, sample: Dict, max_seq_length: int, sorted_dialog_columns: List, ): """ Tokenize both contexts and response of dialog data separately """ len_message_history = len(sorted_dialog_columns) max_seq_length = min(max_seq_length, tokenizer.model_max_length) max_each_message_length = max_seq_length // len_message_history - 1 messages = [sample[k] for k in sorted_dialog_columns] result = {model_input_name: [] for model_input_name in tokenizer.model_input_names} messages = [str(message) if message is not None else '' for message in messages] tokens = tokenizer( messages, padding=False, max_length=max_each_message_length, truncation=True, add_special_tokens=False ) for model_input_name in tokens.keys(): result[model_input_name].extend(tokens[model_input_name]) return result def merge_dialog_data( tokenizer: transformers.PreTrainedTokenizer, sample: Dict ): cls_token = tokenizer(CLS_TOKEN, add_special_tokens=False) sep_token = tokenizer(SEP_TOKEN, add_special_tokens=False) response_token = tokenizer(RESPONSE_TOKEN, add_special_tokens=False) model_input_names = tokenizer.model_input_names result = {} for model_input_name in model_input_names: tokens = [] tokens.extend(cls_token[model_input_name]) for i, message in enumerate(sample[model_input_name]): tokens.extend(message) if i < len(sample[model_input_name]) - 2: tokens.extend(sep_token[model_input_name]) elif i == len(sample[model_input_name]) - 2: tokens.extend(response_token[model_input_name]) result[model_input_name] = torch.tensor([tokens]) if torch.cuda.is_available(): result[model_input_name] = result[model_input_name].cuda() return result tokenized_dialog = tokenize_dialog_data(tokenizer, sample, MAX_SEQ_LENGTH, sorted_dialog_columns) tokens = merge_dialog_data(tokenizer, tokenized_dialog) with torch.inference_mode(): logits = model(**tokens).logits probas = torch.sigmoid(logits)[0].cpu().detach().numpy() print(probas) ```