--- library_name: transformers license: mit base_model: bert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: fine_tune_bert_output results: [] datasets: - unimelb-nlp/wikiann language: - es metrics: - recall - precision - f1 pipeline_tag: token-classification --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6478787f79f2d49511ec4f5e/zlC7cw2dkAsm-J_cNOpmE.png) --- # **spanish_bert_based_ner** --- # fine_tune_bert_output This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an [wikiann](https://huggingface.co/datasets/unimelb-nlp/wikiann) dataset. It achieves the following results on the evaluation set: - Loss: 0.3320 - Overall Precision: 0.9051 - Overall Recall: 0.9121 - Overall F1: 0.9086 - Overall Accuracy: 0.9577 - Loc F1: 0.9190 - Org F1: 0.8663 - Per F1: 0.9367 ## Labels The following table represents the labels used by the model along with their corresponding indices: | Index | Label | |-------|---------| | 0 | O | | 1 | B-PER | | 2 | I-PER | | 3 | B-ORG | | 4 | I-ORG | | 5 | B-LOC | | 6 | I-LOC | ### Label Descriptions - **O**: Outside of a named entity. - **B-PER**: Beginning of a person's name. - **I-PER**: Inside a person's name. - **B-ORG**: Beginning of an organization's name. - **I-ORG**: Inside an organization's name. - **B-LOC**: Beginning of a location name. - **I-LOC**: Inside a location name. ## Inference Example ```python from transformers import pipeline # Load the model ner_pipeline = pipeline("ner", model="syubraj/spanish_bert_based_ner") # Example text text = "Elon Musk vive en Estados Unidos y es dueƱo de Space X, Tesla y Starlink" # Perform inference entities = ner_pipeline(text) for ent in entities: print(f"Word: {ent['word']} | Label: {ent['entity']}") ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:| | 0.2713 | 0.8 | 1000 | 0.2236 | 0.8498 | 0.8672 | 0.8584 | 0.9401 | 0.8834 | 0.8019 | 0.8790 | | 0.1537 | 1.6 | 2000 | 0.1909 | 0.8772 | 0.8943 | 0.8857 | 0.9495 | 0.9002 | 0.8369 | 0.9164 | | 0.1152 | 2.4 | 3000 | 0.2095 | 0.8848 | 0.8981 | 0.8914 | 0.9523 | 0.9039 | 0.8432 | 0.9220 | | 0.0889 | 3.2 | 4000 | 0.2223 | 0.8978 | 0.8998 | 0.8988 | 0.9546 | 0.9080 | 0.8569 | 0.9290 | | 0.0701 | 4.0 | 5000 | 0.2152 | 0.8937 | 0.9042 | 0.8989 | 0.9544 | 0.9113 | 0.8565 | 0.9246 | | 0.0457 | 4.8 | 6000 | 0.2365 | 0.9017 | 0.9069 | 0.9043 | 0.9563 | 0.9164 | 0.8616 | 0.9310 | | 0.0364 | 5.6 | 7000 | 0.2622 | 0.9037 | 0.9086 | 0.9061 | 0.9578 | 0.9148 | 0.8639 | 0.9365 | | 0.026 | 6.4 | 8000 | 0.2916 | 0.9037 | 0.9159 | 0.9097 | 0.9585 | 0.9183 | 0.8712 | 0.9366 | | 0.0215 | 7.2 | 9000 | 0.2985 | 0.9022 | 0.9128 | 0.9074 | 0.9565 | 0.9178 | 0.8676 | 0.9323 | | 0.0134 | 8.0 | 10000 | 0.3071 | 0.904 | 0.9131 | 0.9085 | 0.9574 | 0.9198 | 0.8671 | 0.9344 | | 0.0091 | 8.8 | 11000 | 0.3335 | 0.9056 | 0.9115 | 0.9085 | 0.9573 | 0.9175 | 0.8670 | 0.9373 | | 0.0074 | 9.6 | 12000 | 0.3320 | 0.9051 | 0.9121 | 0.9086 | 0.9577 | 0.9190 | 0.8663 | 0.9367 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1