--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: sentiment_fine_tune_bert results: [] --- # sentiment_fine_tune_bert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a spam classification dataset. It achieves the following results on the evaluation set: {'eval_loss': 0.017569826330457415} ## Intended uses & limitations The model can be used for classifing whether the text is spam or not. ## Training procedure Trained using TFTrainer ### Training hyperparameters num_train_epochs = 2, per_device_train_batch_size = 8, per_device_eval_batch_size = 16, eval_steps=100, warmup_steps = 500, weight_decay = 0.01, logging_steps = 10, ### Training results Confusion matrix - [[955, 0], [ 0, 160]] precision recall f1-score support 0 1.00 1.00 1.00 955 1 1.00 1.00 1.00 160 accuracy 1.00 1115 macro avg 1.00 1.00 1.00 1115 weighted avg 1.00 1.00 1.00 1115 ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Tokenizers 0.15.0