--- language: - de - en - es - fr - it --- # Model Card for xVLM2Vec ## Model description **xVLM2Vec** is a *Large Vision-Language Model (LVLM)* aligned over **TIGER-Lab/VLM2Vec-LoRA**. This model has been trained for increased performance in multilingual retrieval tasks, specifically it was trained on a [machine-translated parallel corpus](https://huggingface.co/datasets/swap-uniba/xMMEB-train). It is capable of performing several multimodal retrieval tasks (e.g. Text-to-Image, Image-to-Text, VQA, Visual Grounding and Classification). More details regarding the training procedure (e.g. hyperparameters, dataset construction, and so on) can be found in the [paper]. - **Developed by:** Elio Musacchio, Lucia Siciliani, Pierpaolo Basile - **Model type:** Phi-3.5-vision-instruct - **Language(s) (NLP):** English, French, German, Italian and Spanish - **License:** [Apache 2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md) - **Finetuned from model:** [TIGER-Lab/VLM2Vec-LoRA](https://huggingface.co/TIGER-Lab/VLM2Vec-LoRA) ## How to Get Started with the Model Below you can find an example of model usage. To facilitate its usage, we recommend pulling from GitHub the version of the VLM2Vec source code we used for both training and inference: ``` git clone https://github.com/swapUniba/xVLM2Vec mv xVLM2Vec/src/mmeb_src . rm -r xVLM2Vec ``` Now you should be able to run the following: ```python from mmeb_src.model import MMEBModel from mmeb_src.arguments import ModelArguments from PIL import Image from transformers import AutoProcessor import torch import requests model_args = ModelArguments( model_name='microsoft/Phi-3.5-vision-instruct', checkpoint_path="m-elio/xVLM2Vec", pooling='last', normalize=True, lora=False, ) processor = AutoProcessor.from_pretrained( "microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, num_crops=4, ) model = MMEBModel.load(model_args) model.eval() model = model.to('cuda', dtype=torch.bfloat16) with torch.no_grad(): inputs = processor("<|image_1|>\nTrova una didascalia che descriva l'immagine di tutti i giorni", [Image.open(requests.get("http://images.cocodataset.org/train2017/000000514915.jpg", stream=True).raw)]) inputs = {key: value.to('cuda') for key, value in inputs.items()} qry_output = model(qry=inputs)["qry_reps"] strings = ['Un cane steso sul pavimento', 'Un gatto steso sul pavimento'] inputs = processor(strings) inputs = {key: value.to('cuda') for key, value in inputs.items()} tgt_output = model(tgt=inputs)["tgt_reps"] cos_sim = model.compute_similarity(qry_output, tgt_output).squeeze() for string_, sim_ in zip(strings, cos_sim): print(string_, '=', sim_) ``` This is a use case where the model is being used to retrieve an image caption in Italian. ## Citation If you use this model in your research, please cite the following: ```bibtex @misc{musacchio2025xvlm2vecadaptinglvlmbasedembedding, title={xVLM2Vec: Adapting LVLM-based embedding models to multilinguality using Self-Knowledge Distillation}, author={Elio Musacchio and Lucia Siciliani and Pierpaolo Basile and Giovanni Semeraro}, year={2025}, eprint={2503.09313}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.09313}, } ```