<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> [[open-in-colab]] # Trajectory Consistency Distillation-LoRA Trajectory Consistency Distillation (TCD) enables a model to generate higher quality and more detailed images with fewer steps. Moreover, owing to the effective error mitigation during the distillation process, TCD demonstrates superior performance even under conditions of large inference steps. The major advantages of TCD are: - Better than Teacher: TCD demonstrates superior generative quality at both small and large inference steps and exceeds the performance of [DPM-Solver++(2S)](../../api/schedulers/multistep_dpm_solver) with Stable Diffusion XL (SDXL). There is no additional discriminator or LPIPS supervision included during TCD training. - Flexible Inference Steps: The inference steps for TCD sampling can be freely adjusted without adversely affecting the image quality. - Freely change detail level: During inference, the level of detail in the image can be adjusted with a single hyperparameter, *gamma*. > [!TIP] > For more technical details of TCD, please refer to the [paper](https://arxiv.org/abs/2402.19159) or official [project page](https://mhh0318.github.io/tcd/)). For large models like SDXL, TCD is trained with [LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) to reduce memory usage. This is also useful because you can reuse LoRAs between different finetuned models, as long as they share the same base model, without further training. This guide will show you how to perform inference with TCD-LoRAs for a variety of tasks like text-to-image and inpainting, as well as how you can easily combine TCD-LoRAs with other adapters. Choose one of the supported base model and it's corresponding TCD-LoRA checkpoint from the table below to get started. | Base model | TCD-LoRA checkpoint | |-------------------------------------------------------------------------------------------------|----------------------------------------------------------------| | [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) | [TCD-SD15](https://huggingface.co/h1t/TCD-SD15-LoRA) | | [stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) | [TCD-SD21-base](https://huggingface.co/h1t/TCD-SD21-base-LoRA) | | [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | [TCD-SDXL](https://huggingface.co/h1t/TCD-SDXL-LoRA) | Make sure you have [PEFT](https://github.com/huggingface/peft) installed for better LoRA support. ```bash pip install -U peft ``` ## General tasks In this guide, let's use the [`StableDiffusionXLPipeline`] and the [`TCDScheduler`]. Use the [`~StableDiffusionPipeline.load_lora_weights`] method to load the SDXL-compatible TCD-LoRA weights. A few tips to keep in mind for TCD-LoRA inference are to: - Keep the `num_inference_steps` between 4 and 50 - Set `eta` (used to control stochasticity at each step) between 0 and 1. You should use a higher `eta` when increasing the number of inference steps, but the downside is that a larger `eta` in [`TCDScheduler`] leads to blurrier images. A value of 0.3 is recommended to produce good results. <hfoptions id="tasks"> <hfoption id="text-to-image"> ```python import torch from diffusers import StableDiffusionXLPipeline, TCDScheduler device = "cuda" base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" tcd_lora_id = "h1t/TCD-SDXL-LoRA" pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device) pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(tcd_lora_id) pipe.fuse_lora() prompt = "Painting of the orange cat Otto von Garfield, Count of Bismarck-Schönhausen, Duke of Lauenburg, Minister-President of Prussia. Depicted wearing a Prussian Pickelhaube and eating his favorite meal - lasagna." image = pipe( prompt=prompt, num_inference_steps=4, guidance_scale=0, eta=0.3, generator=torch.Generator(device=device).manual_seed(0), ).images[0] ```  </hfoption> <hfoption id="inpainting"> ```python import torch from diffusers import AutoPipelineForInpainting, TCDScheduler from diffusers.utils import load_image, make_image_grid device = "cuda" base_model_id = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1" tcd_lora_id = "h1t/TCD-SDXL-LoRA" pipe = AutoPipelineForInpainting.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device) pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(tcd_lora_id) pipe.fuse_lora() img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = load_image(img_url).resize((1024, 1024)) mask_image = load_image(mask_url).resize((1024, 1024)) prompt = "a tiger sitting on a park bench" image = pipe( prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=8, guidance_scale=0, eta=0.3, strength=0.99, # make sure to use `strength` below 1.0 generator=torch.Generator(device=device).manual_seed(0), ).images[0] grid_image = make_image_grid([init_image, mask_image, image], rows=1, cols=3) ```  </hfoption> </hfoptions> ## Community models TCD-LoRA also works with many community finetuned models and plugins. For example, load the [animagine-xl-3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0) checkpoint which is a community finetuned version of SDXL for generating anime images. ```python import torch from diffusers import StableDiffusionXLPipeline, TCDScheduler device = "cuda" base_model_id = "cagliostrolab/animagine-xl-3.0" tcd_lora_id = "h1t/TCD-SDXL-LoRA" pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device) pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(tcd_lora_id) pipe.fuse_lora() prompt = "A man, clad in a meticulously tailored military uniform, stands with unwavering resolve. The uniform boasts intricate details, and his eyes gleam with determination. Strands of vibrant, windswept hair peek out from beneath the brim of his cap." image = pipe( prompt=prompt, num_inference_steps=8, guidance_scale=0, eta=0.3, generator=torch.Generator(device=device).manual_seed(0), ).images[0] ```  TCD-LoRA also supports other LoRAs trained on different styles. For example, let's load the [TheLastBen/Papercut_SDXL](https://huggingface.co/TheLastBen/Papercut_SDXL) LoRA and fuse it with the TCD-LoRA with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method. > [!TIP] > Check out the [Merge LoRAs](merge_loras) guide to learn more about efficient merging methods. ```python import torch from diffusers import StableDiffusionXLPipeline from scheduling_tcd import TCDScheduler device = "cuda" base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" tcd_lora_id = "h1t/TCD-SDXL-LoRA" styled_lora_id = "TheLastBen/Papercut_SDXL" pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device) pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(tcd_lora_id, adapter_name="tcd") pipe.load_lora_weights(styled_lora_id, adapter_name="style") pipe.set_adapters(["tcd", "style"], adapter_weights=[1.0, 1.0]) prompt = "papercut of a winter mountain, snow" image = pipe( prompt=prompt, num_inference_steps=4, guidance_scale=0, eta=0.3, generator=torch.Generator(device=device).manual_seed(0), ).images[0] ```  ## Adapters TCD-LoRA is very versatile, and it can be combined with other adapter types like ControlNets, IP-Adapter, and AnimateDiff. <hfoptions id="adapters"> <hfoption id="ControlNet"> ### Depth ControlNet ```python import torch import numpy as np from PIL import Image from transformers import DPTFeatureExtractor, DPTForDepthEstimation from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline from diffusers.utils import load_image, make_image_grid from scheduling_tcd import TCDScheduler device = "cuda" depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device) feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") def get_depth_map(image): image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) with torch.no_grad(), torch.autocast(device): depth_map = depth_estimator(image).predicted_depth depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=(1024, 1024), mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = (depth_map - depth_min) / (depth_max - depth_min) image = torch.cat([depth_map] * 3, dim=1) image = image.permute(0, 2, 3, 1).cpu().numpy()[0] image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) return image base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" controlnet_id = "diffusers/controlnet-depth-sdxl-1.0" tcd_lora_id = "h1t/TCD-SDXL-LoRA" controlnet = ControlNetModel.from_pretrained( controlnet_id, torch_dtype=torch.float16, variant="fp16", ) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( base_model_id, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16", ) pipe.enable_model_cpu_offload() pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(tcd_lora_id) pipe.fuse_lora() prompt = "stormtrooper lecture, photorealistic" image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png") depth_image = get_depth_map(image) controlnet_conditioning_scale = 0.5 # recommended for good generalization image = pipe( prompt, image=depth_image, num_inference_steps=4, guidance_scale=0, eta=0.3, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=torch.Generator(device=device).manual_seed(0), ).images[0] grid_image = make_image_grid([depth_image, image], rows=1, cols=2) ```  ### Canny ControlNet ```python import torch from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline from diffusers.utils import load_image, make_image_grid from scheduling_tcd import TCDScheduler device = "cuda" base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" controlnet_id = "diffusers/controlnet-canny-sdxl-1.0" tcd_lora_id = "h1t/TCD-SDXL-LoRA" controlnet = ControlNetModel.from_pretrained( controlnet_id, torch_dtype=torch.float16, variant="fp16", ) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( base_model_id, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16", ) pipe.enable_model_cpu_offload() pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(tcd_lora_id) pipe.fuse_lora() prompt = "ultrarealistic shot of a furry blue bird" canny_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") controlnet_conditioning_scale = 0.5 # recommended for good generalization image = pipe( prompt, image=canny_image, num_inference_steps=4, guidance_scale=0, eta=0.3, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=torch.Generator(device=device).manual_seed(0), ).images[0] grid_image = make_image_grid([canny_image, image], rows=1, cols=2) ```  <Tip> The inference parameters in this example might not work for all examples, so we recommend you to try different values for `num_inference_steps`, `guidance_scale`, `controlnet_conditioning_scale` and `cross_attention_kwargs` parameters and choose the best one. </Tip> </hfoption> <hfoption id="IP-Adapter"> This example shows how to use the TCD-LoRA with the [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter/tree/main) and SDXL. ```python import torch from diffusers import StableDiffusionXLPipeline from diffusers.utils import load_image, make_image_grid from ip_adapter import IPAdapterXL from scheduling_tcd import TCDScheduler device = "cuda" base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" image_encoder_path = "sdxl_models/image_encoder" ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin" tcd_lora_id = "h1t/TCD-SDXL-LoRA" pipe = StableDiffusionXLPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, variant="fp16" ) pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(tcd_lora_id) pipe.fuse_lora() ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device) ref_image = load_image("https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/images/woman.png").resize((512, 512)) prompt = "best quality, high quality, wearing sunglasses" image = ip_model.generate( pil_image=ref_image, prompt=prompt, scale=0.5, num_samples=1, num_inference_steps=4, guidance_scale=0, eta=0.3, seed=0, )[0] grid_image = make_image_grid([ref_image, image], rows=1, cols=2) ```  </hfoption> <hfoption id="AnimateDiff"> [`AnimateDiff`] allows animating images using Stable Diffusion models. TCD-LoRA can substantially accelerate the process without degrading image quality. The quality of animation with TCD-LoRA and AnimateDiff has a more lucid outcome. ```python import torch from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler from scheduling_tcd import TCDScheduler from diffusers.utils import export_to_gif adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5") pipe = AnimateDiffPipeline.from_pretrained( "frankjoshua/toonyou_beta6", motion_adapter=adapter, ).to("cuda") # set TCDScheduler pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) # load TCD LoRA pipe.load_lora_weights("h1t/TCD-SD15-LoRA", adapter_name="tcd") pipe.load_lora_weights("guoyww/animatediff-motion-lora-zoom-in", weight_name="diffusion_pytorch_model.safetensors", adapter_name="motion-lora") pipe.set_adapters(["tcd", "motion-lora"], adapter_weights=[1.0, 1.2]) prompt = "best quality, masterpiece, 1girl, looking at viewer, blurry background, upper body, contemporary, dress" generator = torch.manual_seed(0) frames = pipe( prompt=prompt, num_inference_steps=5, guidance_scale=0, cross_attention_kwargs={"scale": 1}, num_frames=24, eta=0.3, generator=generator ).frames[0] export_to_gif(frames, "animation.gif") ```  </hfoption> </hfoptions>