|
import contextlib |
|
import gc |
|
import inspect |
|
import io |
|
import json |
|
import os |
|
import re |
|
import tempfile |
|
import unittest |
|
import uuid |
|
from typing import Any, Callable, Dict, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from huggingface_hub import ModelCard, delete_repo |
|
from huggingface_hub.utils import is_jinja_available |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AsymmetricAutoencoderKL, |
|
AutoencoderKL, |
|
AutoencoderTiny, |
|
ConsistencyDecoderVAE, |
|
DDIMScheduler, |
|
DiffusionPipeline, |
|
StableDiffusionPipeline, |
|
StableDiffusionXLPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import IPAdapterMixin |
|
from diffusers.models.attention_processor import AttnProcessor |
|
from diffusers.models.controlnet_xs import UNetControlNetXSModel |
|
from diffusers.models.unets.unet_3d_condition import UNet3DConditionModel |
|
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet |
|
from diffusers.models.unets.unet_motion_model import UNetMotionModel |
|
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import logging |
|
from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available |
|
from diffusers.utils.testing_utils import CaptureLogger, require_torch, skip_mps, torch_device |
|
|
|
from ..models.autoencoders.test_models_vae import ( |
|
get_asym_autoencoder_kl_config, |
|
get_autoencoder_kl_config, |
|
get_autoencoder_tiny_config, |
|
get_consistency_vae_config, |
|
) |
|
from ..models.unets.test_models_unet_2d_condition import ( |
|
create_ip_adapter_faceid_state_dict, |
|
create_ip_adapter_state_dict, |
|
) |
|
from ..others.test_utils import TOKEN, USER, is_staging_test |
|
|
|
|
|
def to_np(tensor): |
|
if isinstance(tensor, torch.Tensor): |
|
tensor = tensor.detach().cpu().numpy() |
|
|
|
return tensor |
|
|
|
|
|
def check_same_shape(tensor_list): |
|
shapes = [tensor.shape for tensor in tensor_list] |
|
return all(shape == shapes[0] for shape in shapes[1:]) |
|
|
|
|
|
class SDFunctionTesterMixin: |
|
""" |
|
This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes. |
|
It provides a set of common tests for PyTorch pipeline that inherit from StableDiffusionMixin, e.g. vae_slicing, vae_tiling, freeu, etc. |
|
""" |
|
|
|
def test_vae_slicing(self, image_count=4): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"]] * image_count |
|
if "image" in inputs: |
|
inputs["image"] = [inputs["image"]] * image_count |
|
output_1 = pipe(**inputs) |
|
|
|
|
|
pipe.enable_vae_slicing() |
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"]] * image_count |
|
if "image" in inputs: |
|
inputs["image"] = [inputs["image"]] * image_count |
|
inputs["return_dict"] = False |
|
output_2 = pipe(**inputs) |
|
|
|
assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2 |
|
|
|
def test_vae_tiling(self): |
|
components = self.get_dummy_components() |
|
|
|
|
|
if "safety_checker" in components: |
|
components["safety_checker"] = None |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["return_dict"] = False |
|
|
|
|
|
output_1 = pipe(**inputs)[0] |
|
|
|
|
|
pipe.enable_vae_tiling() |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["return_dict"] = False |
|
output_2 = pipe(**inputs)[0] |
|
|
|
assert np.abs(to_np(output_2) - to_np(output_1)).max() < 5e-1 |
|
|
|
|
|
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] |
|
with torch.no_grad(): |
|
for shape in shapes: |
|
zeros = torch.zeros(shape).to(torch_device) |
|
pipe.vae.decode(zeros) |
|
|
|
|
|
@skip_mps |
|
def test_freeu_enabled(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["return_dict"] = False |
|
inputs["output_type"] = "np" |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["return_dict"] = False |
|
inputs["output_type"] = "np" |
|
|
|
output_freeu = pipe(**inputs)[0] |
|
|
|
assert not np.allclose( |
|
output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1] |
|
), "Enabling of FreeU should lead to different results." |
|
|
|
def test_freeu_disabled(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["return_dict"] = False |
|
inputs["output_type"] = "np" |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) |
|
pipe.disable_freeu() |
|
|
|
freeu_keys = {"s1", "s2", "b1", "b2"} |
|
for upsample_block in pipe.unet.up_blocks: |
|
for key in freeu_keys: |
|
assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None." |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["return_dict"] = False |
|
inputs["output_type"] = "np" |
|
|
|
output_no_freeu = pipe(**inputs)[0] |
|
assert np.allclose( |
|
output, output_no_freeu, atol=1e-2 |
|
), f"Disabling of FreeU should lead to results similar to the default pipeline results but Max Abs Error={np.abs(output_no_freeu - output).max()}." |
|
|
|
def test_fused_qkv_projections(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["return_dict"] = False |
|
image = pipe(**inputs)[0] |
|
original_image_slice = image[0, -3:, -3:, -1] |
|
|
|
pipe.fuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
inputs["return_dict"] = False |
|
image_fused = pipe(**inputs)[0] |
|
image_slice_fused = image_fused[0, -3:, -3:, -1] |
|
|
|
pipe.unfuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
inputs["return_dict"] = False |
|
image_disabled = pipe(**inputs)[0] |
|
image_slice_disabled = image_disabled[0, -3:, -3:, -1] |
|
|
|
assert np.allclose( |
|
original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2 |
|
), "Fusion of QKV projections shouldn't affect the outputs." |
|
assert np.allclose( |
|
image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." |
|
assert np.allclose( |
|
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Original outputs should match when fused QKV projections are disabled." |
|
|
|
|
|
class IPAdapterTesterMixin: |
|
""" |
|
This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes. |
|
It provides a set of common tests for pipelines that support IP Adapters. |
|
""" |
|
|
|
def test_pipeline_signature(self): |
|
parameters = inspect.signature(self.pipeline_class.__call__).parameters |
|
|
|
assert issubclass(self.pipeline_class, IPAdapterMixin) |
|
self.assertIn( |
|
"ip_adapter_image", |
|
parameters, |
|
"`ip_adapter_image` argument must be supported by the `__call__` method", |
|
) |
|
self.assertIn( |
|
"ip_adapter_image_embeds", |
|
parameters, |
|
"`ip_adapter_image_embeds` argument must be supported by the `__call__` method", |
|
) |
|
|
|
def _get_dummy_image_embeds(self, cross_attention_dim: int = 32): |
|
return torch.randn((2, 1, cross_attention_dim), device=torch_device) |
|
|
|
def _get_dummy_faceid_image_embeds(self, cross_attention_dim: int = 32): |
|
return torch.randn((2, 1, 1, cross_attention_dim), device=torch_device) |
|
|
|
def _get_dummy_masks(self, input_size: int = 64): |
|
_masks = torch.zeros((1, 1, input_size, input_size), device=torch_device) |
|
_masks[0, :, :, : int(input_size / 2)] = 1 |
|
return _masks |
|
|
|
def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]): |
|
parameters = inspect.signature(self.pipeline_class.__call__).parameters |
|
if "image" in parameters.keys() and "strength" in parameters.keys(): |
|
inputs["num_inference_steps"] = 4 |
|
|
|
inputs["output_type"] = "np" |
|
inputs["return_dict"] = False |
|
return inputs |
|
|
|
def test_ip_adapter_single(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None): |
|
|
|
|
|
expected_max_diff = 9e-4 if torch_device == "cpu" else expected_max_diff |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components).to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
if expected_pipe_slice is None: |
|
output_without_adapter = pipe(**inputs)[0] |
|
else: |
|
output_without_adapter = expected_pipe_slice |
|
|
|
adapter_state_dict = create_ip_adapter_state_dict(pipe.unet) |
|
pipe.unet._load_ip_adapter_weights(adapter_state_dict) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] |
|
pipe.set_ip_adapter_scale(0.0) |
|
output_without_adapter_scale = pipe(**inputs)[0] |
|
if expected_pipe_slice is not None: |
|
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten() |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] |
|
pipe.set_ip_adapter_scale(42.0) |
|
output_with_adapter_scale = pipe(**inputs)[0] |
|
if expected_pipe_slice is not None: |
|
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten() |
|
|
|
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max() |
|
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max() |
|
|
|
self.assertLess( |
|
max_diff_without_adapter_scale, |
|
expected_max_diff, |
|
"Output without ip-adapter must be same as normal inference", |
|
) |
|
self.assertGreater( |
|
max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference" |
|
) |
|
|
|
def test_ip_adapter_multi(self, expected_max_diff: float = 1e-4): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components).to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
output_without_adapter = pipe(**inputs)[0] |
|
|
|
adapter_state_dict_1 = create_ip_adapter_state_dict(pipe.unet) |
|
adapter_state_dict_2 = create_ip_adapter_state_dict(pipe.unet) |
|
pipe.unet._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2]) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2 |
|
pipe.set_ip_adapter_scale([0.0, 0.0]) |
|
output_without_multi_adapter_scale = pipe(**inputs)[0] |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2 |
|
pipe.set_ip_adapter_scale([42.0, 42.0]) |
|
output_with_multi_adapter_scale = pipe(**inputs)[0] |
|
|
|
max_diff_without_multi_adapter_scale = np.abs( |
|
output_without_multi_adapter_scale - output_without_adapter |
|
).max() |
|
max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max() |
|
self.assertLess( |
|
max_diff_without_multi_adapter_scale, |
|
expected_max_diff, |
|
"Output without multi-ip-adapter must be same as normal inference", |
|
) |
|
self.assertGreater( |
|
max_diff_with_multi_adapter_scale, |
|
1e-2, |
|
"Output with multi-ip-adapter scale must be different from normal inference", |
|
) |
|
|
|
def test_ip_adapter_cfg(self, expected_max_diff: float = 1e-4): |
|
parameters = inspect.signature(self.pipeline_class.__call__).parameters |
|
|
|
if "guidance_scale" not in parameters: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components).to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32) |
|
|
|
adapter_state_dict = create_ip_adapter_state_dict(pipe.unet) |
|
pipe.unet._load_ip_adapter_weights(adapter_state_dict) |
|
pipe.set_ip_adapter_scale(1.0) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)[0].unsqueeze(0)] |
|
inputs["guidance_scale"] = 1.0 |
|
out_no_cfg = pipe(**inputs)[0] |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] |
|
inputs["guidance_scale"] = 7.5 |
|
out_cfg = pipe(**inputs)[0] |
|
|
|
assert out_cfg.shape == out_no_cfg.shape |
|
|
|
def test_ip_adapter_masks(self, expected_max_diff: float = 1e-4): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components).to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32) |
|
sample_size = pipe.unet.config.get("sample_size", 32) |
|
block_out_channels = pipe.vae.config.get("block_out_channels", [128, 256, 512, 512]) |
|
input_size = sample_size * (2 ** (len(block_out_channels) - 1)) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
output_without_adapter = pipe(**inputs)[0] |
|
output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten() |
|
|
|
adapter_state_dict = create_ip_adapter_state_dict(pipe.unet) |
|
pipe.unet._load_ip_adapter_weights(adapter_state_dict) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] |
|
inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]} |
|
pipe.set_ip_adapter_scale(0.0) |
|
output_without_adapter_scale = pipe(**inputs)[0] |
|
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten() |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] |
|
inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]} |
|
pipe.set_ip_adapter_scale(42.0) |
|
output_with_adapter_scale = pipe(**inputs)[0] |
|
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten() |
|
|
|
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max() |
|
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max() |
|
|
|
self.assertLess( |
|
max_diff_without_adapter_scale, |
|
expected_max_diff, |
|
"Output without ip-adapter must be same as normal inference", |
|
) |
|
self.assertGreater( |
|
max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference" |
|
) |
|
|
|
def test_ip_adapter_faceid(self, expected_max_diff: float = 1e-4): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components).to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
output_without_adapter = pipe(**inputs)[0] |
|
output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten() |
|
|
|
adapter_state_dict = create_ip_adapter_faceid_state_dict(pipe.unet) |
|
pipe.unet._load_ip_adapter_weights(adapter_state_dict) |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_faceid_image_embeds(cross_attention_dim)] |
|
pipe.set_ip_adapter_scale(0.0) |
|
output_without_adapter_scale = pipe(**inputs)[0] |
|
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten() |
|
|
|
|
|
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device)) |
|
inputs["ip_adapter_image_embeds"] = [self._get_dummy_faceid_image_embeds(cross_attention_dim)] |
|
pipe.set_ip_adapter_scale(42.0) |
|
output_with_adapter_scale = pipe(**inputs)[0] |
|
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten() |
|
|
|
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max() |
|
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max() |
|
|
|
self.assertLess( |
|
max_diff_without_adapter_scale, |
|
expected_max_diff, |
|
"Output without ip-adapter must be same as normal inference", |
|
) |
|
self.assertGreater( |
|
max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference" |
|
) |
|
|
|
|
|
class PipelineLatentTesterMixin: |
|
""" |
|
This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes. |
|
It provides a set of common tests for PyTorch pipeline that has vae, e.g. |
|
equivalence of different input and output types, etc. |
|
""" |
|
|
|
@property |
|
def image_params(self) -> frozenset: |
|
raise NotImplementedError( |
|
"You need to set the attribute `image_params` in the child test class. " |
|
"`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results" |
|
) |
|
|
|
@property |
|
def image_latents_params(self) -> frozenset: |
|
raise NotImplementedError( |
|
"You need to set the attribute `image_latents_params` in the child test class. " |
|
"`image_latents_params` are tested for if passing latents directly are producing same results" |
|
) |
|
|
|
def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"): |
|
inputs = self.get_dummy_inputs(device, seed) |
|
|
|
def convert_to_pt(image): |
|
if isinstance(image, torch.Tensor): |
|
input_image = image |
|
elif isinstance(image, np.ndarray): |
|
input_image = VaeImageProcessor.numpy_to_pt(image) |
|
elif isinstance(image, PIL.Image.Image): |
|
input_image = VaeImageProcessor.pil_to_numpy(image) |
|
input_image = VaeImageProcessor.numpy_to_pt(input_image) |
|
else: |
|
raise ValueError(f"unsupported input_image_type {type(image)}") |
|
return input_image |
|
|
|
def convert_pt_to_type(image, input_image_type): |
|
if input_image_type == "pt": |
|
input_image = image |
|
elif input_image_type == "np": |
|
input_image = VaeImageProcessor.pt_to_numpy(image) |
|
elif input_image_type == "pil": |
|
input_image = VaeImageProcessor.pt_to_numpy(image) |
|
input_image = VaeImageProcessor.numpy_to_pil(input_image) |
|
else: |
|
raise ValueError(f"unsupported input_image_type {input_image_type}.") |
|
return input_image |
|
|
|
for image_param in self.image_params: |
|
if image_param in inputs.keys(): |
|
inputs[image_param] = convert_pt_to_type( |
|
convert_to_pt(inputs[image_param]).to(device), input_image_type |
|
) |
|
|
|
inputs["output_type"] = output_type |
|
|
|
return inputs |
|
|
|
def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4): |
|
self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff) |
|
|
|
def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output_pt = pipe( |
|
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt") |
|
)[0] |
|
output_np = pipe( |
|
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np") |
|
)[0] |
|
output_pil = pipe( |
|
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil") |
|
)[0] |
|
|
|
max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max() |
|
self.assertLess( |
|
max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`" |
|
) |
|
|
|
max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max() |
|
self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`") |
|
|
|
def test_pt_np_pil_inputs_equivalent(self): |
|
if len(self.image_params) == 0: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0] |
|
out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0] |
|
out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0] |
|
|
|
max_diff = np.abs(out_input_pt - out_input_np).max() |
|
self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`") |
|
max_diff = np.abs(out_input_pil - out_input_np).max() |
|
self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`") |
|
|
|
def test_latents_input(self): |
|
if len(self.image_latents_params) == 0: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0] |
|
|
|
vae = components["vae"] |
|
inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt") |
|
generator = inputs["generator"] |
|
for image_param in self.image_latents_params: |
|
if image_param in inputs.keys(): |
|
inputs[image_param] = ( |
|
vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor |
|
) |
|
out_latents_inputs = pipe(**inputs)[0] |
|
|
|
max_diff = np.abs(out - out_latents_inputs).max() |
|
self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image") |
|
|
|
def test_multi_vae(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
block_out_channels = pipe.vae.config.block_out_channels |
|
norm_num_groups = pipe.vae.config.norm_num_groups |
|
|
|
vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny] |
|
configs = [ |
|
get_autoencoder_kl_config(block_out_channels, norm_num_groups), |
|
get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups), |
|
get_consistency_vae_config(block_out_channels, norm_num_groups), |
|
get_autoencoder_tiny_config(block_out_channels), |
|
] |
|
|
|
out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0] |
|
|
|
for vae_cls, config in zip(vae_classes, configs): |
|
vae = vae_cls(**config) |
|
vae = vae.to(torch_device) |
|
components["vae"] = vae |
|
vae_pipe = self.pipeline_class(**components) |
|
out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0] |
|
|
|
assert out_vae_np.shape == out_np.shape |
|
|
|
|
|
@require_torch |
|
class PipelineFromPipeTesterMixin: |
|
@property |
|
def original_pipeline_class(self): |
|
if "xl" in self.pipeline_class.__name__.lower(): |
|
original_pipeline_class = StableDiffusionXLPipeline |
|
else: |
|
original_pipeline_class = StableDiffusionPipeline |
|
|
|
return original_pipeline_class |
|
|
|
def get_dummy_inputs_pipe(self, device, seed=0): |
|
inputs = self.get_dummy_inputs(device, seed=seed) |
|
inputs["output_type"] = "np" |
|
inputs["return_dict"] = False |
|
return inputs |
|
|
|
def get_dummy_inputs_for_pipe_original(self, device, seed=0): |
|
inputs = {} |
|
for k, v in self.get_dummy_inputs_pipe(device, seed=seed).items(): |
|
if k in set(inspect.signature(self.original_pipeline_class.__call__).parameters.keys()): |
|
inputs[k] = v |
|
return inputs |
|
|
|
def test_from_pipe_consistent_config(self): |
|
if self.original_pipeline_class == StableDiffusionPipeline: |
|
original_repo = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
original_kwargs = {"requires_safety_checker": False} |
|
elif self.original_pipeline_class == StableDiffusionXLPipeline: |
|
original_repo = "hf-internal-testing/tiny-stable-diffusion-xl-pipe" |
|
original_kwargs = {"requires_aesthetics_score": True, "force_zeros_for_empty_prompt": False} |
|
else: |
|
raise ValueError( |
|
"original_pipeline_class must be either StableDiffusionPipeline or StableDiffusionXLPipeline" |
|
) |
|
|
|
|
|
pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs) |
|
|
|
|
|
pipe_components = self.get_dummy_components() |
|
pipe_additional_components = {} |
|
for name, component in pipe_components.items(): |
|
if name not in pipe_original.components: |
|
pipe_additional_components[name] = component |
|
|
|
pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components) |
|
|
|
|
|
original_pipe_additional_components = {} |
|
for name, component in pipe_original.components.items(): |
|
if name not in pipe.components or not isinstance(component, pipe.components[name].__class__): |
|
original_pipe_additional_components[name] = component |
|
|
|
pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components) |
|
|
|
|
|
original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")} |
|
original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")} |
|
assert original_config_2 == original_config |
|
|
|
def test_from_pipe_consistent_forward_pass(self, expected_max_diff=1e-3): |
|
components = self.get_dummy_components() |
|
original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class) |
|
|
|
|
|
original_pipe_components = {} |
|
|
|
original_pipe_additional_components = {} |
|
|
|
current_pipe_additional_components = {} |
|
|
|
for name, component in components.items(): |
|
if name in original_expected_modules: |
|
original_pipe_components[name] = component |
|
else: |
|
current_pipe_additional_components[name] = component |
|
for name in original_expected_modules: |
|
if name not in original_pipe_components: |
|
if name in self.original_pipeline_class._optional_components: |
|
original_pipe_additional_components[name] = None |
|
else: |
|
raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}") |
|
|
|
pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components) |
|
for component in pipe_original.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe_original.to(torch_device) |
|
pipe_original.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs_for_pipe_original(torch_device) |
|
output_original = pipe_original(**inputs)[0] |
|
|
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs_pipe(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components) |
|
pipe_from_original.to(torch_device) |
|
pipe_from_original.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs_pipe(torch_device) |
|
output_from_original = pipe_from_original(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_from_original)).max() |
|
self.assertLess( |
|
max_diff, |
|
expected_max_diff, |
|
"The outputs of the pipelines created with `from_pipe` and `__init__` are different.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs_for_pipe_original(torch_device) |
|
output_original_2 = pipe_original(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output_original) - to_np(output_original_2)).max() |
|
self.assertLess(max_diff, expected_max_diff, "`from_pipe` should not change the output of original pipeline.") |
|
|
|
for component in pipe_original.components.values(): |
|
if hasattr(component, "attn_processors"): |
|
assert all( |
|
type(proc) == AttnProcessor for proc in component.attn_processors.values() |
|
), "`from_pipe` changed the attention processor in original pipeline." |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"), |
|
reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher", |
|
) |
|
def test_from_pipe_consistent_forward_pass_cpu_offload(self, expected_max_diff=1e-3): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs_pipe(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class) |
|
|
|
original_pipe_components = {} |
|
|
|
original_pipe_additional_components = {} |
|
|
|
current_pipe_additional_components = {} |
|
for name, component in components.items(): |
|
if name in original_expected_modules: |
|
original_pipe_components[name] = component |
|
else: |
|
current_pipe_additional_components[name] = component |
|
for name in original_expected_modules: |
|
if name not in original_pipe_components: |
|
if name in self.original_pipeline_class._optional_components: |
|
original_pipe_additional_components[name] = None |
|
else: |
|
raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}") |
|
|
|
pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components) |
|
for component in pipe_original.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe_original.set_progress_bar_config(disable=None) |
|
pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components) |
|
pipe_from_original.enable_model_cpu_offload() |
|
pipe_from_original.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs_pipe(torch_device) |
|
output_from_original = pipe_from_original(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_from_original)).max() |
|
self.assertLess( |
|
max_diff, |
|
expected_max_diff, |
|
"The outputs of the pipelines created with `from_pipe` and `__init__` are different.", |
|
) |
|
|
|
|
|
@require_torch |
|
class PipelineKarrasSchedulerTesterMixin: |
|
""" |
|
This mixin is designed to be used with unittest.TestCase classes. |
|
It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers |
|
equivalence of dict and tuple outputs, etc. |
|
""" |
|
|
|
def test_karras_schedulers_shape( |
|
self, num_inference_steps_for_strength=4, num_inference_steps_for_strength_for_iterations=5 |
|
): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
|
|
pipe.scheduler.register_to_config(skip_prk_steps=True) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = 2 |
|
|
|
if "strength" in inputs: |
|
inputs["num_inference_steps"] = num_inference_steps_for_strength |
|
inputs["strength"] = 0.5 |
|
|
|
outputs = [] |
|
for scheduler_enum in KarrasDiffusionSchedulers: |
|
if "KDPM2" in scheduler_enum.name: |
|
inputs["num_inference_steps"] = num_inference_steps_for_strength_for_iterations |
|
|
|
scheduler_cls = getattr(diffusers, scheduler_enum.name) |
|
pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config) |
|
output = pipe(**inputs)[0] |
|
outputs.append(output) |
|
|
|
if "KDPM2" in scheduler_enum.name: |
|
inputs["num_inference_steps"] = 2 |
|
|
|
assert check_same_shape(outputs) |
|
|
|
|
|
@require_torch |
|
class PipelineTesterMixin: |
|
""" |
|
This mixin is designed to be used with unittest.TestCase classes. |
|
It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline, |
|
equivalence of dict and tuple outputs, etc. |
|
""" |
|
|
|
|
|
|
|
|
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"num_images_per_prompt", |
|
"generator", |
|
"latents", |
|
"output_type", |
|
"return_dict", |
|
] |
|
) |
|
|
|
|
|
test_attention_slicing = True |
|
|
|
test_xformers_attention = True |
|
|
|
def get_generator(self, seed): |
|
device = torch_device if torch_device != "mps" else "cpu" |
|
generator = torch.Generator(device).manual_seed(seed) |
|
return generator |
|
|
|
@property |
|
def pipeline_class(self) -> Union[Callable, DiffusionPipeline]: |
|
raise NotImplementedError( |
|
"You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. " |
|
"See existing pipeline tests for reference." |
|
) |
|
|
|
def get_dummy_components(self): |
|
raise NotImplementedError( |
|
"You need to implement `get_dummy_components(self)` in the child test class. " |
|
"See existing pipeline tests for reference." |
|
) |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
raise NotImplementedError( |
|
"You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. " |
|
"See existing pipeline tests for reference." |
|
) |
|
|
|
@property |
|
def params(self) -> frozenset: |
|
raise NotImplementedError( |
|
"You need to set the attribute `params` in the child test class. " |
|
"`params` are checked for if all values are present in `__call__`'s signature." |
|
" You can set `params` using one of the common set of parameters defined in `pipeline_params.py`" |
|
" e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to " |
|
"image pipelines, including prompts and prompt embedding overrides." |
|
"If your pipeline's set of arguments has minor changes from one of the common sets of arguments, " |
|
"do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline " |
|
"with non-configurable height and width arguments should set the attribute as " |
|
"`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. " |
|
"See existing pipeline tests for reference." |
|
) |
|
|
|
@property |
|
def batch_params(self) -> frozenset: |
|
raise NotImplementedError( |
|
"You need to set the attribute `batch_params` in the child test class. " |
|
"`batch_params` are the parameters required to be batched when passed to the pipeline's " |
|
"`__call__` method. `pipeline_params.py` provides some common sets of parameters such as " |
|
"`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's " |
|
"set of batch arguments has minor changes from one of the common sets of batch arguments, " |
|
"do not make modifications to the existing common sets of batch arguments. I.e. a text to " |
|
"image pipeline `negative_prompt` is not batched should set the attribute as " |
|
"`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. " |
|
"See existing pipeline tests for reference." |
|
) |
|
|
|
@property |
|
def callback_cfg_params(self) -> frozenset: |
|
raise NotImplementedError( |
|
"You need to set the attribute `callback_cfg_params` in the child test class that requires to run test_callback_cfg. " |
|
"`callback_cfg_params` are the parameters that needs to be passed to the pipeline's callback " |
|
"function when dynamically adjusting `guidance_scale`. They are variables that require special" |
|
"treatment when `do_classifier_free_guidance` is `True`. `pipeline_params.py` provides some common" |
|
" sets of parameters such as `TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS`. If your pipeline's " |
|
"set of cfg arguments has minor changes from one of the common sets of cfg arguments, " |
|
"do not make modifications to the existing common sets of cfg arguments. I.e. for inpaint pipeline, you " |
|
" need to adjust batch size of `mask` and `masked_image_latents` so should set the attribute as" |
|
"`callback_cfg_params = TEXT_TO_IMAGE_CFG_PARAMS.union({'mask', 'masked_image_latents'})`" |
|
) |
|
|
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_save_load_local(self, expected_max_difference=5e-4): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
logger = logging.get_logger("diffusers.pipelines.pipeline_utils") |
|
logger.setLevel(diffusers.logging.INFO) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir, safe_serialization=False) |
|
|
|
with CaptureLogger(logger) as cap_logger: |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
|
|
for component in pipe_loaded.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
for name in pipe_loaded.components.keys(): |
|
if name not in pipe_loaded._optional_components: |
|
assert name in str(cap_logger) |
|
|
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, expected_max_difference) |
|
|
|
def test_pipeline_call_signature(self): |
|
self.assertTrue( |
|
hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method" |
|
) |
|
|
|
parameters = inspect.signature(self.pipeline_class.__call__).parameters |
|
|
|
optional_parameters = set() |
|
|
|
for k, v in parameters.items(): |
|
if v.default != inspect._empty: |
|
optional_parameters.add(k) |
|
|
|
parameters = set(parameters.keys()) |
|
parameters.remove("self") |
|
parameters.discard("kwargs") |
|
|
|
remaining_required_parameters = set() |
|
|
|
for param in self.params: |
|
if param not in parameters: |
|
remaining_required_parameters.add(param) |
|
|
|
self.assertTrue( |
|
len(remaining_required_parameters) == 0, |
|
f"Required parameters not present: {remaining_required_parameters}", |
|
) |
|
|
|
remaining_required_optional_parameters = set() |
|
|
|
for param in self.required_optional_params: |
|
if param not in optional_parameters: |
|
remaining_required_optional_parameters.add(param) |
|
|
|
self.assertTrue( |
|
len(remaining_required_optional_parameters) == 0, |
|
f"Required optional parameters not present: {remaining_required_optional_parameters}", |
|
) |
|
|
|
def test_inference_batch_consistent(self, batch_sizes=[2]): |
|
self._test_inference_batch_consistent(batch_sizes=batch_sizes) |
|
|
|
def _test_inference_batch_consistent( |
|
self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True |
|
): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["generator"] = self.get_generator(0) |
|
|
|
logger = logging.get_logger(pipe.__module__) |
|
logger.setLevel(level=diffusers.logging.FATAL) |
|
|
|
|
|
batched_inputs = [] |
|
for batch_size in batch_sizes: |
|
batched_input = {} |
|
batched_input.update(inputs) |
|
|
|
for name in self.batch_params: |
|
if name not in inputs: |
|
continue |
|
|
|
value = inputs[name] |
|
if name == "prompt": |
|
len_prompt = len(value) |
|
|
|
batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] |
|
|
|
|
|
batched_input[name][-1] = 100 * "very long" |
|
|
|
else: |
|
batched_input[name] = batch_size * [value] |
|
|
|
if batch_generator and "generator" in inputs: |
|
batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)] |
|
|
|
if "batch_size" in inputs: |
|
batched_input["batch_size"] = batch_size |
|
|
|
batched_inputs.append(batched_input) |
|
|
|
logger.setLevel(level=diffusers.logging.WARNING) |
|
for batch_size, batched_input in zip(batch_sizes, batched_inputs): |
|
output = pipe(**batched_input) |
|
assert len(output[0]) == batch_size |
|
|
|
def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4): |
|
self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff) |
|
|
|
def _test_inference_batch_single_identical( |
|
self, |
|
batch_size=2, |
|
expected_max_diff=1e-4, |
|
additional_params_copy_to_batched_inputs=["num_inference_steps"], |
|
): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for components in pipe.components.values(): |
|
if hasattr(components, "set_default_attn_processor"): |
|
components.set_default_attn_processor() |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
inputs["generator"] = self.get_generator(0) |
|
|
|
logger = logging.get_logger(pipe.__module__) |
|
logger.setLevel(level=diffusers.logging.FATAL) |
|
|
|
|
|
batched_inputs = {} |
|
batched_inputs.update(inputs) |
|
|
|
for name in self.batch_params: |
|
if name not in inputs: |
|
continue |
|
|
|
value = inputs[name] |
|
if name == "prompt": |
|
len_prompt = len(value) |
|
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] |
|
batched_inputs[name][-1] = 100 * "very long" |
|
|
|
else: |
|
batched_inputs[name] = batch_size * [value] |
|
|
|
if "generator" in inputs: |
|
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] |
|
|
|
if "batch_size" in inputs: |
|
batched_inputs["batch_size"] = batch_size |
|
|
|
for arg in additional_params_copy_to_batched_inputs: |
|
batched_inputs[arg] = inputs[arg] |
|
|
|
output = pipe(**inputs) |
|
output_batch = pipe(**batched_inputs) |
|
|
|
assert output_batch[0].shape[0] == batch_size |
|
|
|
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() |
|
assert max_diff < expected_max_diff |
|
|
|
def test_dict_tuple_outputs_equivalent(self, expected_slice=None, expected_max_difference=1e-4): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
if expected_slice is None: |
|
output = pipe(**self.get_dummy_inputs(generator_device))[0] |
|
else: |
|
output = expected_slice |
|
|
|
output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0] |
|
|
|
if expected_slice is None: |
|
max_diff = np.abs(to_np(output) - to_np(output_tuple)).max() |
|
else: |
|
if output_tuple.ndim != 5: |
|
max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1].flatten()).max() |
|
else: |
|
max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1, -1].flatten()).max() |
|
|
|
self.assertLess(max_diff, expected_max_difference) |
|
|
|
def test_components_function(self): |
|
init_components = self.get_dummy_components() |
|
init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float))} |
|
|
|
pipe = self.pipeline_class(**init_components) |
|
|
|
self.assertTrue(hasattr(pipe, "components")) |
|
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) |
|
|
|
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") |
|
def test_float16_inference(self, expected_max_diff=5e-2): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
components = self.get_dummy_components() |
|
pipe_fp16 = self.pipeline_class(**components) |
|
for component in pipe_fp16.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
pipe_fp16.to(torch_device, torch.float16) |
|
pipe_fp16.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
if "generator" in inputs: |
|
inputs["generator"] = self.get_generator(0) |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
fp16_inputs = self.get_dummy_inputs(torch_device) |
|
|
|
if "generator" in fp16_inputs: |
|
fp16_inputs["generator"] = self.get_generator(0) |
|
|
|
output_fp16 = pipe_fp16(**fp16_inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_fp16)).max() |
|
self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.") |
|
|
|
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") |
|
def test_save_load_float16(self, expected_max_diff=1e-2): |
|
components = self.get_dummy_components() |
|
for name, module in components.items(): |
|
if hasattr(module, "half"): |
|
components[name] = module.to(torch_device).half() |
|
|
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) |
|
for component in pipe_loaded.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for name, component in pipe_loaded.components.items(): |
|
if hasattr(component, "dtype"): |
|
self.assertTrue( |
|
component.dtype == torch.float16, |
|
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess( |
|
max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading." |
|
) |
|
|
|
def test_save_load_optional_components(self, expected_max_difference=1e-4): |
|
if not hasattr(self.pipeline_class, "_optional_components"): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir, safe_serialization=False) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
for component in pipe_loaded.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, expected_max_difference) |
|
|
|
@unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices") |
|
def test_to_device(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.to("cpu") |
|
model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] |
|
self.assertTrue(all(device == "cpu" for device in model_devices)) |
|
|
|
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] |
|
self.assertTrue(np.isnan(output_cpu).sum() == 0) |
|
|
|
pipe.to("cuda") |
|
model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] |
|
self.assertTrue(all(device == "cuda" for device in model_devices)) |
|
|
|
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] |
|
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) |
|
|
|
def test_to_dtype(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")] |
|
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) |
|
|
|
pipe.to(dtype=torch.float16) |
|
model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")] |
|
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) |
|
|
|
def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3): |
|
self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff) |
|
|
|
def _test_attention_slicing_forward_pass( |
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 |
|
): |
|
if not self.test_attention_slicing: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_without_slicing = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=1) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing = pipe(**inputs)[0] |
|
|
|
if test_max_difference: |
|
max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max() |
|
self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results") |
|
|
|
if test_mean_pixel_difference: |
|
assert_mean_pixel_difference(to_np(output_with_slicing[0]), to_np(output_without_slicing[0])) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"), |
|
reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher", |
|
) |
|
def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4): |
|
import accelerate |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_without_offload = pipe(**inputs)[0] |
|
|
|
pipe.enable_sequential_cpu_offload() |
|
assert pipe._execution_device.type == "cuda" |
|
|
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_offload = pipe(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() |
|
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results") |
|
|
|
|
|
offloaded_modules = { |
|
k: v |
|
for k, v in pipe.components.items() |
|
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload |
|
} |
|
|
|
self.assertTrue( |
|
all(v.device.type == "meta" for v in offloaded_modules.values()), |
|
f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}", |
|
) |
|
|
|
self.assertTrue( |
|
all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()), |
|
f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}", |
|
) |
|
|
|
|
|
|
|
offloaded_modules_with_incorrect_hooks = {} |
|
for k, v in offloaded_modules.items(): |
|
if hasattr(v, "_hf_hook"): |
|
if isinstance(v._hf_hook, accelerate.hooks.SequentialHook): |
|
|
|
for hook in v._hf_hook.hooks: |
|
if not isinstance(hook, accelerate.hooks.AlignDevicesHook): |
|
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook.hooks[0]) |
|
elif not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook): |
|
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook) |
|
|
|
self.assertTrue( |
|
len(offloaded_modules_with_incorrect_hooks) == 0, |
|
f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}", |
|
) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.17.0"), |
|
reason="CPU offload is only available with CUDA and `accelerate v0.17.0` or higher", |
|
) |
|
def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4): |
|
import accelerate |
|
|
|
generator_device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_without_offload = pipe(**inputs)[0] |
|
|
|
pipe.enable_model_cpu_offload() |
|
assert pipe._execution_device.type == "cuda" |
|
|
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_offload = pipe(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() |
|
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results") |
|
|
|
|
|
offloaded_modules = { |
|
k: v |
|
for k, v in pipe.components.items() |
|
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload |
|
} |
|
|
|
self.assertTrue( |
|
all(v.device.type == "cpu" for v in offloaded_modules.values()), |
|
f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}", |
|
) |
|
|
|
self.assertTrue( |
|
all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()), |
|
f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}", |
|
) |
|
|
|
offloaded_modules_with_incorrect_hooks = {} |
|
for k, v in offloaded_modules.items(): |
|
if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload): |
|
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook) |
|
|
|
self.assertTrue( |
|
len(offloaded_modules_with_incorrect_hooks) == 0, |
|
f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}", |
|
) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.17.0"), |
|
reason="CPU offload is only available with CUDA and `accelerate v0.17.0` or higher", |
|
) |
|
def test_cpu_offload_forward_pass_twice(self, expected_max_diff=2e-4): |
|
import accelerate |
|
|
|
generator_device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.enable_model_cpu_offload() |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_offload = pipe(**inputs)[0] |
|
|
|
pipe.enable_model_cpu_offload() |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_offload_twice = pipe(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max() |
|
self.assertLess( |
|
max_diff, expected_max_diff, "running CPU offloading 2nd time should not affect the inference results" |
|
) |
|
|
|
|
|
offloaded_modules = { |
|
k: v |
|
for k, v in pipe.components.items() |
|
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload |
|
} |
|
|
|
self.assertTrue( |
|
all(v.device.type == "cpu" for v in offloaded_modules.values()), |
|
f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}", |
|
) |
|
|
|
self.assertTrue( |
|
all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()), |
|
f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}", |
|
) |
|
|
|
offloaded_modules_with_incorrect_hooks = {} |
|
for k, v in offloaded_modules.items(): |
|
if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload): |
|
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook) |
|
|
|
self.assertTrue( |
|
len(offloaded_modules_with_incorrect_hooks) == 0, |
|
f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}", |
|
) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"), |
|
reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher", |
|
) |
|
def test_sequential_offload_forward_pass_twice(self, expected_max_diff=2e-4): |
|
import accelerate |
|
|
|
generator_device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.enable_sequential_cpu_offload() |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_offload = pipe(**inputs)[0] |
|
|
|
pipe.enable_sequential_cpu_offload() |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_offload_twice = pipe(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max() |
|
self.assertLess( |
|
max_diff, expected_max_diff, "running sequential offloading second time should have the inference results" |
|
) |
|
|
|
|
|
offloaded_modules = { |
|
k: v |
|
for k, v in pipe.components.items() |
|
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload |
|
} |
|
|
|
self.assertTrue( |
|
all(v.device.type == "meta" for v in offloaded_modules.values()), |
|
f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}", |
|
) |
|
|
|
self.assertTrue( |
|
all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()), |
|
f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}", |
|
) |
|
|
|
|
|
|
|
offloaded_modules_with_incorrect_hooks = {} |
|
for k, v in offloaded_modules.items(): |
|
if hasattr(v, "_hf_hook"): |
|
if isinstance(v._hf_hook, accelerate.hooks.SequentialHook): |
|
|
|
for hook in v._hf_hook.hooks: |
|
if not isinstance(hook, accelerate.hooks.AlignDevicesHook): |
|
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook.hooks[0]) |
|
elif not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook): |
|
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook) |
|
|
|
self.assertTrue( |
|
len(offloaded_modules_with_incorrect_hooks) == 0, |
|
f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}", |
|
) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass() |
|
|
|
def _test_xformers_attention_forwardGenerator_pass( |
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4 |
|
): |
|
if not self.test_xformers_attention: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_without_offload = pipe(**inputs)[0] |
|
output_without_offload = ( |
|
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload |
|
) |
|
|
|
pipe.enable_xformers_memory_efficient_attention() |
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_with_offload = pipe(**inputs)[0] |
|
output_with_offload = ( |
|
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload |
|
) |
|
|
|
if test_max_difference: |
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() |
|
self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results") |
|
|
|
if test_mean_pixel_difference: |
|
assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0]) |
|
|
|
def test_progress_bar(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): |
|
_ = pipe(**inputs) |
|
stderr = stderr.getvalue() |
|
|
|
|
|
max_steps = re.search("/(.*?) ", stderr).group(1) |
|
self.assertTrue(max_steps is not None and len(max_steps) > 0) |
|
self.assertTrue( |
|
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" |
|
) |
|
|
|
pipe.set_progress_bar_config(disable=True) |
|
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): |
|
_ = pipe(**inputs) |
|
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") |
|
|
|
def test_num_images_per_prompt(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
|
|
if "num_images_per_prompt" not in sig.parameters: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
batch_sizes = [1, 2] |
|
num_images_per_prompts = [1, 2] |
|
|
|
for batch_size in batch_sizes: |
|
for num_images_per_prompt in num_images_per_prompts: |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
for key in inputs.keys(): |
|
if key in self.batch_params: |
|
inputs[key] = batch_size * [inputs[key]] |
|
|
|
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] |
|
|
|
assert images.shape[0] == batch_size * num_images_per_prompt |
|
|
|
def test_cfg(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
|
|
if "guidance_scale" not in sig.parameters: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
inputs["guidance_scale"] = 1.0 |
|
out_no_cfg = pipe(**inputs)[0] |
|
|
|
inputs["guidance_scale"] = 7.5 |
|
out_cfg = pipe(**inputs)[0] |
|
|
|
assert out_cfg.shape == out_no_cfg.shape |
|
|
|
def test_callback_inputs(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters |
|
has_callback_step_end = "callback_on_step_end" in sig.parameters |
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
self.assertTrue( |
|
hasattr(pipe, "_callback_tensor_inputs"), |
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", |
|
) |
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs): |
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs): |
|
for tensor_name in pipe._callback_tensor_inputs: |
|
assert tensor_name in callback_kwargs |
|
|
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_subset |
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] |
|
inputs["output_type"] = "latent" |
|
output = pipe(**inputs)[0] |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_all |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
inputs["output_type"] = "latent" |
|
output = pipe(**inputs)[0] |
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): |
|
is_last = i == (pipe.num_timesteps - 1) |
|
if is_last: |
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
inputs["output_type"] = "latent" |
|
output = pipe(**inputs)[0] |
|
assert output.abs().sum() == 0 |
|
|
|
def test_callback_cfg(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters |
|
has_callback_step_end = "callback_on_step_end" in sig.parameters |
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end): |
|
return |
|
|
|
if "guidance_scale" not in sig.parameters: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
self.assertTrue( |
|
hasattr(pipe, "_callback_tensor_inputs"), |
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", |
|
) |
|
|
|
def callback_increase_guidance(pipe, i, t, callback_kwargs): |
|
pipe._guidance_scale += 1.0 |
|
|
|
return callback_kwargs |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
|
|
|
|
inputs["guidance_scale"] = 2.0 |
|
inputs["callback_on_step_end"] = callback_increase_guidance |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
_ = pipe(**inputs)[0] |
|
|
|
|
|
|
|
|
|
assert pipe.guidance_scale == (inputs["guidance_scale"] + pipe.num_timesteps) |
|
|
|
def test_StableDiffusionMixin_component(self): |
|
"""Any pipeline that have LDMFuncMixin should have vae and unet components.""" |
|
if not issubclass(self.pipeline_class, StableDiffusionMixin): |
|
return |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
self.assertTrue(hasattr(pipe, "vae") and isinstance(pipe.vae, (AutoencoderKL, AutoencoderTiny))) |
|
self.assertTrue( |
|
hasattr(pipe, "unet") |
|
and isinstance( |
|
pipe.unet, |
|
(UNet2DConditionModel, UNet3DConditionModel, I2VGenXLUNet, UNetMotionModel, UNetControlNetXSModel), |
|
) |
|
) |
|
|
|
|
|
@is_staging_test |
|
class PipelinePushToHubTester(unittest.TestCase): |
|
identifier = uuid.uuid4() |
|
repo_id = f"test-pipeline-{identifier}" |
|
org_repo_id = f"valid_org/{repo_id}-org" |
|
|
|
def get_pipeline_components(self): |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
|
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
|
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
|
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
dummy_vocab = {"<|startoftext|>": 0, "<|endoftext|>": 1, "!": 2} |
|
vocab_path = os.path.join(tmpdir, "vocab.json") |
|
with open(vocab_path, "w") as f: |
|
json.dump(dummy_vocab, f) |
|
|
|
merges = "Ġ t\nĠt h" |
|
merges_path = os.path.join(tmpdir, "merges.txt") |
|
with open(merges_path, "w") as f: |
|
f.writelines(merges) |
|
tokenizer = CLIPTokenizer(vocab_file=vocab_path, merges_file=merges_path) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def test_push_to_hub(self): |
|
components = self.get_pipeline_components() |
|
pipeline = StableDiffusionPipeline(**components) |
|
pipeline.push_to_hub(self.repo_id, token=TOKEN) |
|
|
|
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet") |
|
unet = components["unet"] |
|
for p1, p2 in zip(unet.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
|
|
delete_repo(token=TOKEN, repo_id=self.repo_id) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
pipeline.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN) |
|
|
|
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet") |
|
for p1, p2 in zip(unet.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
|
|
delete_repo(self.repo_id, token=TOKEN) |
|
|
|
def test_push_to_hub_in_organization(self): |
|
components = self.get_pipeline_components() |
|
pipeline = StableDiffusionPipeline(**components) |
|
pipeline.push_to_hub(self.org_repo_id, token=TOKEN) |
|
|
|
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet") |
|
unet = components["unet"] |
|
for p1, p2 in zip(unet.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
|
|
delete_repo(token=TOKEN, repo_id=self.org_repo_id) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
pipeline.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id) |
|
|
|
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet") |
|
for p1, p2 in zip(unet.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
|
|
delete_repo(self.org_repo_id, token=TOKEN) |
|
|
|
@unittest.skipIf( |
|
not is_jinja_available(), |
|
reason="Model card tests cannot be performed without Jinja installed.", |
|
) |
|
def test_push_to_hub_library_name(self): |
|
components = self.get_pipeline_components() |
|
pipeline = StableDiffusionPipeline(**components) |
|
pipeline.push_to_hub(self.repo_id, token=TOKEN) |
|
|
|
model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data |
|
assert model_card.library_name == "diffusers" |
|
|
|
|
|
delete_repo(self.repo_id, token=TOKEN) |
|
|
|
|
|
|
|
|
|
|
|
class SDXLOptionalComponentsTesterMixin: |
|
def encode_prompt( |
|
self, tokenizers, text_encoders, prompt: str, num_images_per_prompt: int = 1, negative_prompt: str = None |
|
): |
|
device = text_encoders[0].device |
|
|
|
if isinstance(prompt, str): |
|
prompt = [prompt] |
|
batch_size = len(prompt) |
|
|
|
prompt_embeds_list = [] |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) |
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
if negative_prompt is None: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
else: |
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
|
|
negative_prompt_embeds_list = [] |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) |
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
def _test_save_load_optional_components(self, expected_max_difference=1e-4): |
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
|
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
|
|
tokenizer = components.pop("tokenizer") |
|
tokenizer_2 = components.pop("tokenizer_2") |
|
text_encoder = components.pop("text_encoder") |
|
text_encoder_2 = components.pop("text_encoder_2") |
|
|
|
tokenizers = [tokenizer, tokenizer_2] if tokenizer is not None else [tokenizer_2] |
|
text_encoders = [text_encoder, text_encoder_2] if text_encoder is not None else [text_encoder_2] |
|
prompt = inputs.pop("prompt") |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt(tokenizers, text_encoders, prompt) |
|
inputs["prompt_embeds"] = prompt_embeds |
|
inputs["negative_prompt_embeds"] = negative_prompt_embeds |
|
inputs["pooled_prompt_embeds"] = pooled_prompt_embeds |
|
inputs["negative_pooled_prompt_embeds"] = negative_pooled_prompt_embeds |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
for component in pipe_loaded.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(generator_device) |
|
_ = inputs.pop("prompt") |
|
inputs["prompt_embeds"] = prompt_embeds |
|
inputs["negative_prompt_embeds"] = negative_prompt_embeds |
|
inputs["pooled_prompt_embeds"] = pooled_prompt_embeds |
|
inputs["negative_pooled_prompt_embeds"] = negative_pooled_prompt_embeds |
|
|
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, expected_max_difference) |
|
|
|
|
|
|
|
|
|
|
|
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10): |
|
image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32) |
|
expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32) |
|
avg_diff = np.abs(image - expected_image).mean() |
|
assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average" |
|
|