import argparse import os from typing import Optional, Union import numpy as np import torch from tqdm import tqdm from dataset import config_utils from dataset.config_utils import BlueprintGenerator, ConfigSanitizer import accelerate from dataset.image_video_dataset import ItemInfo, save_text_encoder_output_cache from hunyuan_model import text_encoder as text_encoder_module from hunyuan_model.text_encoder import TextEncoder import logging from utils.model_utils import str_to_dtype logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def encode_prompt(text_encoder: TextEncoder, prompt: Union[str, list[str]]): data_type = "video" # video only, image is not supported text_inputs = text_encoder.text2tokens(prompt, data_type=data_type) with torch.no_grad(): prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type) return prompt_outputs.hidden_state, prompt_outputs.attention_mask def encode_and_save_batch( text_encoder: TextEncoder, batch: list[ItemInfo], is_llm: bool, accelerator: Optional[accelerate.Accelerator] ): prompts = [item.caption for item in batch] # print(prompts) # encode prompt if accelerator is not None: with accelerator.autocast(): prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts) else: prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts) # # convert to fp16 if needed # if prompt_embeds.dtype == torch.float32 and text_encoder.dtype != torch.float32: # prompt_embeds = prompt_embeds.to(text_encoder.dtype) # save prompt cache for item, embed, mask in zip(batch, prompt_embeds, prompt_mask): save_text_encoder_output_cache(item, embed, mask, is_llm) def main(args): device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu" device = torch.device(device) # Load dataset config blueprint_generator = BlueprintGenerator(ConfigSanitizer()) logger.info(f"Load dataset config from {args.dataset_config}") user_config = config_utils.load_user_config(args.dataset_config) blueprint = blueprint_generator.generate(user_config, args) train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group) datasets = train_dataset_group.datasets # define accelerator for fp8 inference accelerator = None if args.fp8_llm: accelerator = accelerate.Accelerator(mixed_precision="fp16") # define encode function num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1) def encode_for_text_encoder(text_encoder: TextEncoder, is_llm: bool): for i, dataset in enumerate(datasets): print(f"Encoding dataset [{i}]") for batch in tqdm(dataset.retrieve_text_encoder_output_cache_batches(num_workers)): if args.skip_existing: filtered_batch = [item for item in batch if not os.path.exists(item.text_encoder_output_cache_path)] if len(filtered_batch) == 0: continue batch = filtered_batch bs = args.batch_size if args.batch_size is not None else len(batch) for i in range(0, len(batch), bs): encode_and_save_batch(text_encoder, batch[i : i + bs], is_llm, accelerator) # Load Text Encoder 1 text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else str_to_dtype(args.text_encoder_dtype) logger.info(f"loading text encoder 1: {args.text_encoder1}") text_encoder_1 = text_encoder_module.load_text_encoder_1(args.text_encoder1, device, args.fp8_llm, text_encoder_dtype) text_encoder_1.to(device=device) # Encode with Text Encoder 1 logger.info("Encoding with Text Encoder 1") encode_for_text_encoder(text_encoder_1, is_llm=True) del text_encoder_1 # Load Text Encoder 2 logger.info(f"loading text encoder 2: {args.text_encoder2}") text_encoder_2 = text_encoder_module.load_text_encoder_2(args.text_encoder2, device, text_encoder_dtype) text_encoder_2.to(device=device) # Encode with Text Encoder 2 logger.info("Encoding with Text Encoder 2") encode_for_text_encoder(text_encoder_2, is_llm=False) del text_encoder_2 def setup_parser(): parser = argparse.ArgumentParser() parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file") parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory") parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory") parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available") parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16") parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)") parser.add_argument( "--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this" ) parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1") parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files") return parser if __name__ == "__main__": parser = setup_parser() args = parser.parse_args() main(args)