--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bertweet-base-finetuned-SARC-DS results: [] --- # bertweet-base-finetuned-SARC-DS This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7094 - Accuracy: 0.7636 - Precision: 0.7637 - Recall: 0.7636 - F1: 0.7636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4978 | 1.0 | 44221 | 0.4899 | 0.7777 | 0.7787 | 0.7778 | 0.7775 | | 0.4413 | 2.0 | 88442 | 0.4833 | 0.7798 | 0.7803 | 0.7798 | 0.7797 | | 0.3943 | 3.0 | 132663 | 0.5387 | 0.7784 | 0.7784 | 0.7784 | 0.7784 | | 0.3461 | 4.01 | 176884 | 0.6184 | 0.7690 | 0.7701 | 0.7690 | 0.7688 | | 0.3024 | 5.01 | 221105 | 0.6899 | 0.7684 | 0.7691 | 0.7684 | 0.7682 | | 0.2653 | 6.01 | 265326 | 0.7805 | 0.7654 | 0.7660 | 0.7654 | 0.7653 | | 0.2368 | 7.01 | 309547 | 0.9066 | 0.7643 | 0.7648 | 0.7643 | 0.7642 | | 0.2166 | 8.01 | 353768 | 1.0548 | 0.7612 | 0.7620 | 0.7611 | 0.7610 | | 0.2005 | 9.01 | 397989 | 1.0649 | 0.7639 | 0.7639 | 0.7639 | 0.7639 | | 0.1837 | 10.02 | 442210 | 1.1805 | 0.7621 | 0.7624 | 0.7621 | 0.7621 | | 0.1667 | 11.02 | 486431 | 1.3017 | 0.7658 | 0.7659 | 0.7659 | 0.7658 | | 0.1531 | 12.02 | 530652 | 1.2947 | 0.7627 | 0.7628 | 0.7627 | 0.7627 | | 0.1377 | 13.02 | 574873 | 1.3877 | 0.7639 | 0.7639 | 0.7639 | 0.7639 | | 0.1249 | 14.02 | 619094 | 1.4468 | 0.7613 | 0.7616 | 0.7613 | 0.7612 | | 0.1129 | 15.02 | 663315 | 1.4951 | 0.7620 | 0.7621 | 0.7620 | 0.7620 | | 0.103 | 16.02 | 707536 | 1.5599 | 0.7619 | 0.7624 | 0.7619 | 0.7618 | | 0.0937 | 17.03 | 751757 | 1.6270 | 0.7615 | 0.7616 | 0.7615 | 0.7615 | | 0.0864 | 18.03 | 795978 | 1.6918 | 0.7622 | 0.7624 | 0.7622 | 0.7621 | | 0.0796 | 19.03 | 840199 | 1.7094 | 0.7636 | 0.7637 | 0.7636 | 0.7636 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1