--- library_name: keras-nlp pipeline_tag: text-generation --- Hey I am CosmoGemma 👋 I can answer cosmology questions from astroph.CO research articles. This is a Gemma_2b_en fine-tuned on QA pairs (3.5k) generated from Cosmology and Nongalactic Astrophysics articles (arXiv astro-ph.CO) from 2018-2022 and tested on QA pairs (1k) generated from 2023 articles, scoring over 75% accuracy. To generate an answer for a given question using this model, please use: import keras import keras_nlp gemma_lm = keras_nlp.models.CausalLM.from_preset("hf://sultan-hassan/CosmoGemma_2b_en") template = "Instruction:\n{instruction}\n\nResponse:\n{response}" Question = "write your question here" prompt = template.format( instruction=Question, response="", ) out = gemma_lm.generate(prompt, max_length=1024) ind = out.index('Response') + len('Response')+2 print ("Question:", Question) print ("Answer:", out[ind:]) This is a [`Gemma` model](https://keras.io/api/keras_nlp/models/gemma) uploaded using the KerasNLP library and can be used with JAX, TensorFlow, and PyTorch backends. This model is related to a `CausalLM` task. Model config: * **name:** gemma_backbone * **trainable:** True * **vocabulary_size:** 256000 * **num_layers:** 18 * **num_query_heads:** 8 * **num_key_value_heads:** 1 * **hidden_dim:** 2048 * **intermediate_dim:** 32768 * **head_dim:** 256 * **layer_norm_epsilon:** 1e-06 * **dropout:** 0 * **query_head_dim_normalize:** True * **use_post_ffw_norm:** False * **use_post_attention_norm:** False * **final_logit_soft_cap:** None * **attention_logit_soft_cap:** None * **sliding_window_size:** 4096 * **use_sliding_window_attention:** False This model card has been generated automatically and should be completed by the model author. See [Model Cards documentation](https://huggingface.co/docs/hub/model-cards) for more information.