--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v-bert-cv-grain-lg_cv_only results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: lg split: test[:10%] args: lg metrics: - name: Wer type: wer value: 0.5799642969652421 --- # w2v-bert-cv-grain-lg_cv_only This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.5800 - Cer: 0.1379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.5013 | 1.0 | 2221 | inf | 0.2789 | 0.0724 | | 0.299 | 2.0 | 4442 | inf | 0.2501 | 0.0648 | | 0.2554 | 3.0 | 6663 | inf | 0.2435 | 0.0685 | | 0.2411 | 4.0 | 8884 | inf | 0.2447 | 0.0648 | | 0.2886 | 5.0 | 11105 | inf | 0.2506 | 0.0654 | | 0.3923 | 6.0 | 13326 | inf | 0.4237 | 0.1108 | | 2.1779 | 7.0 | 15547 | inf | 0.5612 | 0.1439 | | 4.5629 | 8.0 | 17768 | inf | 0.5152 | 0.1379 | | 2.236 | 9.0 | 19989 | inf | 0.5787 | 0.1384 | | 2.2033 | 10.0 | 22210 | inf | 0.5742 | 0.1375 | | 2.2047 | 11.0 | 24431 | inf | 0.5784 | 0.1382 | | 2.2057 | 12.0 | 26652 | inf | 0.5805 | 0.1390 | | 2.2076 | 13.0 | 28873 | inf | 0.5800 | 0.1379 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1