--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-cv-grain-lg_both results: [] --- # w2v-bert-cv-grain-lg_both This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 16.2243 - Wer: 1.0 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.4609 | 1.0 | 5406 | 0.1400 | 0.1423 | 0.0296 | | 0.2829 | 2.0 | 10812 | 0.1133 | 0.0968 | 0.0213 | | 0.2369 | 3.0 | 16218 | 0.1033 | 0.0883 | 0.0193 | | 0.2106 | 4.0 | 21624 | 0.0848 | 0.0681 | 0.0162 | | 0.197 | 5.0 | 27030 | 0.0871 | 0.0681 | 0.0159 | | 0.2459 | 6.0 | 32436 | 0.1335 | 0.1022 | 0.0203 | | 0.3563 | 7.0 | 37842 | 0.1809 | 0.1254 | 0.0267 | | 0.6033 | 8.0 | 43248 | 0.5575 | 0.7032 | 0.1768 | | 4.656 | 9.0 | 48654 | 16.9063 | 0.9980 | 0.9837 | | 10.5595 | 10.0 | 54060 | 12.4706 | 1.0 | 1.0 | | 17.1148 | 11.0 | 59466 | 16.2280 | 1.0 | 1.0 | | 17.4223 | 12.0 | 64872 | 16.2273 | 1.0 | 1.0 | | 17.4172 | 13.0 | 70278 | 16.2222 | 1.0 | 1.0 | | 17.4159 | 14.0 | 75684 | 16.2243 | 1.0 | 1.0 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1