Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +202 -0
- adapter_config.json +380 -0
- adapter_model.safetensors +3 -0
- checkpoint-1200/README.md +202 -0
- checkpoint-1200/adapter_config.json +380 -0
- checkpoint-1200/adapter_model.safetensors +3 -0
- checkpoint-1200/latest +1 -0
- checkpoint-1200/qwen.tiktoken +0 -0
- checkpoint-1200/rng_state_0.pth +3 -0
- checkpoint-1200/rng_state_1.pth +3 -0
- checkpoint-1200/rng_state_2.pth +3 -0
- checkpoint-1200/rng_state_3.pth +3 -0
- checkpoint-1200/scheduler.pt +3 -0
- checkpoint-1200/special_tokens_map.json +3 -0
- checkpoint-1200/tokenizer_config.json +14 -0
- checkpoint-1200/trainer_state.json +873 -0
- checkpoint-1200/training_args.bin +3 -0
- checkpoint-1200/zero_to_fp32.py +587 -0
- checkpoint-1600/README.md +202 -0
- checkpoint-1600/adapter_config.json +380 -0
- checkpoint-1600/adapter_model.safetensors +3 -0
- checkpoint-1600/latest +1 -0
- checkpoint-1600/qwen.tiktoken +0 -0
- checkpoint-1600/rng_state_0.pth +3 -0
- checkpoint-1600/rng_state_1.pth +3 -0
- checkpoint-1600/rng_state_2.pth +3 -0
- checkpoint-1600/rng_state_3.pth +3 -0
- checkpoint-1600/scheduler.pt +3 -0
- checkpoint-1600/special_tokens_map.json +3 -0
- checkpoint-1600/tokenizer_config.json +14 -0
- checkpoint-1600/trainer_state.json +1153 -0
- checkpoint-1600/training_args.bin +3 -0
- checkpoint-1600/zero_to_fp32.py +587 -0
- checkpoint-2000/README.md +202 -0
- checkpoint-2000/adapter_config.json +380 -0
- checkpoint-2000/adapter_model.safetensors +3 -0
- checkpoint-2000/latest +1 -0
- checkpoint-2000/qwen.tiktoken +0 -0
- checkpoint-2000/rng_state_0.pth +3 -0
- checkpoint-2000/rng_state_1.pth +3 -0
- checkpoint-2000/rng_state_2.pth +3 -0
- checkpoint-2000/rng_state_3.pth +3 -0
- checkpoint-2000/scheduler.pt +3 -0
- checkpoint-2000/special_tokens_map.json +3 -0
- checkpoint-2000/tokenizer_config.json +14 -0
- checkpoint-2000/trainer_state.json +1433 -0
- checkpoint-2000/training_args.bin +3 -0
- checkpoint-2000/zero_to_fp32.py +587 -0
- checkpoint-2400/README.md +202 -0
- checkpoint-2400/adapter_config.json +380 -0
README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: Qwen/Qwen-VL-Chat
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
adapter_config.json
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 16,
|
| 14 |
+
"lora_dropout": 0.05,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 64,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
| 24 |
+
"transformer.h.11.attn.c_attn",
|
| 25 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
| 26 |
+
"transformer.h.26.mlp.c_proj",
|
| 27 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
| 28 |
+
"transformer.h.20.mlp.c_proj",
|
| 29 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
| 30 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
| 31 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
| 32 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
| 33 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
| 34 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
| 35 |
+
"transformer.h.1.mlp.c_proj",
|
| 36 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
| 37 |
+
"transformer.h.28.attn.c_attn",
|
| 38 |
+
"transformer.h.19.attn.c_proj",
|
| 39 |
+
"transformer.h.29.mlp.c_proj",
|
| 40 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
| 41 |
+
"transformer.h.17.attn.c_attn",
|
| 42 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
| 43 |
+
"transformer.h.16.mlp.c_proj",
|
| 44 |
+
"transformer.h.19.mlp.w2",
|
| 45 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
| 46 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
| 47 |
+
"transformer.h.0.mlp.w2",
|
| 48 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
| 49 |
+
"transformer.h.3.mlp.c_proj",
|
| 50 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
| 51 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
| 52 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
| 53 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
| 54 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
| 55 |
+
"transformer.h.0.mlp.w1",
|
| 56 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
| 57 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
| 58 |
+
"transformer.visual.conv1",
|
| 59 |
+
"transformer.h.22.mlp.w2",
|
| 60 |
+
"transformer.h.21.mlp.w2",
|
| 61 |
+
"transformer.h.13.attn.c_attn",
|
| 62 |
+
"transformer.h.10.mlp.w1",
|
| 63 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
| 64 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
| 65 |
+
"transformer.h.16.mlp.w2",
|
| 66 |
+
"transformer.h.8.attn.c_proj",
|
| 67 |
+
"transformer.h.30.mlp.w1",
|
| 68 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
| 69 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
| 70 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
| 71 |
+
"transformer.h.23.attn.c_proj",
|
| 72 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
| 73 |
+
"transformer.h.25.mlp.c_proj",
|
| 74 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
| 75 |
+
"transformer.h.15.attn.c_attn",
|
| 76 |
+
"transformer.h.2.mlp.w1",
|
| 77 |
+
"transformer.h.4.mlp.w1",
|
| 78 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
| 79 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
| 80 |
+
"transformer.h.30.attn.c_attn",
|
| 81 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
| 82 |
+
"transformer.h.8.mlp.c_proj",
|
| 83 |
+
"transformer.h.8.mlp.w2",
|
| 84 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
| 85 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
| 86 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
| 87 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
| 88 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
| 89 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
| 90 |
+
"transformer.h.8.mlp.w1",
|
| 91 |
+
"transformer.h.31.mlp.w1",
|
| 92 |
+
"transformer.h.4.attn.c_attn",
|
| 93 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
| 94 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
| 95 |
+
"transformer.h.13.attn.c_proj",
|
| 96 |
+
"transformer.h.24.attn.c_attn",
|
| 97 |
+
"transformer.h.27.attn.c_attn",
|
| 98 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
| 99 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
| 100 |
+
"transformer.h.31.mlp.c_proj",
|
| 101 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
| 102 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
| 103 |
+
"transformer.h.10.mlp.w2",
|
| 104 |
+
"transformer.h.21.attn.c_attn",
|
| 105 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
| 106 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
| 107 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
| 108 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
| 109 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
| 110 |
+
"transformer.h.18.mlp.w2",
|
| 111 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
| 112 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
| 113 |
+
"transformer.h.12.mlp.w1",
|
| 114 |
+
"transformer.h.7.mlp.w1",
|
| 115 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
| 116 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
| 117 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
| 118 |
+
"transformer.h.23.attn.c_attn",
|
| 119 |
+
"transformer.h.27.mlp.w2",
|
| 120 |
+
"transformer.h.17.mlp.w2",
|
| 121 |
+
"transformer.h.20.mlp.w2",
|
| 122 |
+
"transformer.h.22.mlp.c_proj",
|
| 123 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
| 124 |
+
"transformer.h.27.mlp.c_proj",
|
| 125 |
+
"transformer.h.0.attn.c_proj",
|
| 126 |
+
"transformer.h.5.attn.c_attn",
|
| 127 |
+
"transformer.h.24.mlp.w2",
|
| 128 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
| 129 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
| 130 |
+
"transformer.h.5.mlp.c_proj",
|
| 131 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
| 132 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
| 133 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
| 134 |
+
"transformer.h.26.attn.c_proj",
|
| 135 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
| 136 |
+
"transformer.h.29.attn.c_attn",
|
| 137 |
+
"transformer.h.15.attn.c_proj",
|
| 138 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
| 139 |
+
"transformer.h.4.mlp.c_proj",
|
| 140 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
| 141 |
+
"transformer.h.0.mlp.c_proj",
|
| 142 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
| 143 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
| 144 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
| 145 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
| 146 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
| 147 |
+
"transformer.h.15.mlp.w2",
|
| 148 |
+
"transformer.h.3.attn.c_attn",
|
| 149 |
+
"transformer.h.28.mlp.w1",
|
| 150 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
| 151 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
| 152 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
| 153 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
| 154 |
+
"transformer.h.31.attn.c_proj",
|
| 155 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
| 156 |
+
"transformer.h.17.mlp.w1",
|
| 157 |
+
"transformer.h.18.mlp.c_proj",
|
| 158 |
+
"transformer.h.19.mlp.c_proj",
|
| 159 |
+
"transformer.h.9.mlp.w2",
|
| 160 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
| 161 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
| 162 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
| 163 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
| 164 |
+
"transformer.h.30.mlp.w2",
|
| 165 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
| 166 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
| 167 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
| 168 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
| 169 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
| 170 |
+
"transformer.h.28.mlp.c_proj",
|
| 171 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
| 172 |
+
"transformer.h.22.attn.c_attn",
|
| 173 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
| 174 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
| 175 |
+
"transformer.h.0.attn.c_attn",
|
| 176 |
+
"transformer.h.11.mlp.w2",
|
| 177 |
+
"transformer.h.19.mlp.w1",
|
| 178 |
+
"transformer.h.26.mlp.w2",
|
| 179 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
| 180 |
+
"transformer.h.29.mlp.w2",
|
| 181 |
+
"transformer.h.27.attn.c_proj",
|
| 182 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
| 183 |
+
"transformer.h.17.mlp.c_proj",
|
| 184 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
| 185 |
+
"transformer.h.6.attn.c_attn",
|
| 186 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
| 187 |
+
"transformer.h.21.mlp.w1",
|
| 188 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
| 189 |
+
"transformer.h.20.mlp.w1",
|
| 190 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
| 191 |
+
"transformer.h.23.mlp.c_proj",
|
| 192 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
| 193 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
| 194 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
| 195 |
+
"transformer.h.9.mlp.c_proj",
|
| 196 |
+
"transformer.h.7.attn.c_attn",
|
| 197 |
+
"transformer.h.29.mlp.w1",
|
| 198 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
| 199 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
| 200 |
+
"transformer.h.11.mlp.w1",
|
| 201 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
| 202 |
+
"transformer.h.5.mlp.w2",
|
| 203 |
+
"transformer.h.11.attn.c_proj",
|
| 204 |
+
"transformer.h.18.attn.c_attn",
|
| 205 |
+
"transformer.h.6.mlp.w1",
|
| 206 |
+
"transformer.h.27.mlp.w1",
|
| 207 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
| 208 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
| 209 |
+
"transformer.h.25.attn.c_attn",
|
| 210 |
+
"transformer.h.1.mlp.w2",
|
| 211 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
| 212 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
| 213 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
| 214 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
| 215 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
| 216 |
+
"transformer.h.14.mlp.w1",
|
| 217 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
| 218 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
| 219 |
+
"transformer.h.16.attn.c_attn",
|
| 220 |
+
"transformer.h.3.mlp.w1",
|
| 221 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
| 222 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
| 223 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
| 224 |
+
"transformer.h.15.mlp.w1",
|
| 225 |
+
"transformer.h.9.attn.c_proj",
|
| 226 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
| 227 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
| 228 |
+
"transformer.h.12.attn.c_attn",
|
| 229 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
| 230 |
+
"transformer.h.28.attn.c_proj",
|
| 231 |
+
"transformer.h.13.mlp.w2",
|
| 232 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
| 233 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
| 234 |
+
"transformer.h.22.mlp.w1",
|
| 235 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
| 236 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
| 237 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
| 238 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
| 239 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
| 240 |
+
"transformer.h.24.mlp.w1",
|
| 241 |
+
"transformer.h.12.mlp.w2",
|
| 242 |
+
"transformer.h.30.mlp.c_proj",
|
| 243 |
+
"transformer.h.3.attn.c_proj",
|
| 244 |
+
"transformer.h.11.mlp.c_proj",
|
| 245 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
| 246 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
| 247 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
| 248 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
| 249 |
+
"transformer.h.18.mlp.w1",
|
| 250 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
| 251 |
+
"transformer.h.23.mlp.w1",
|
| 252 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
| 253 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
| 254 |
+
"transformer.h.1.mlp.w1",
|
| 255 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
| 256 |
+
"transformer.h.29.attn.c_proj",
|
| 257 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
| 258 |
+
"transformer.h.21.attn.c_proj",
|
| 259 |
+
"transformer.h.7.attn.c_proj",
|
| 260 |
+
"transformer.h.12.mlp.c_proj",
|
| 261 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
| 262 |
+
"transformer.h.17.attn.c_proj",
|
| 263 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
| 264 |
+
"transformer.h.20.attn.c_attn",
|
| 265 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
| 266 |
+
"transformer.h.14.attn.c_proj",
|
| 267 |
+
"transformer.h.13.mlp.c_proj",
|
| 268 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
| 269 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
| 270 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
| 271 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
| 272 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
| 273 |
+
"transformer.h.23.mlp.w2",
|
| 274 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
| 275 |
+
"transformer.h.8.attn.c_attn",
|
| 276 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
| 277 |
+
"transformer.h.14.mlp.w2",
|
| 278 |
+
"transformer.h.7.mlp.w2",
|
| 279 |
+
"transformer.h.26.mlp.w1",
|
| 280 |
+
"transformer.h.6.mlp.w2",
|
| 281 |
+
"transformer.h.31.attn.c_attn",
|
| 282 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
| 283 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
| 284 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
| 285 |
+
"transformer.h.28.mlp.w2",
|
| 286 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
| 287 |
+
"transformer.h.2.mlp.w2",
|
| 288 |
+
"transformer.h.2.attn.c_attn",
|
| 289 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
| 290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
| 291 |
+
"transformer.h.18.attn.c_proj",
|
| 292 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
| 293 |
+
"transformer.h.12.attn.c_proj",
|
| 294 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
| 295 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
| 296 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
| 297 |
+
"transformer.h.24.attn.c_proj",
|
| 298 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
| 299 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
| 300 |
+
"transformer.h.26.attn.c_attn",
|
| 301 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
| 302 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
| 303 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
| 304 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
| 305 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
| 306 |
+
"transformer.h.21.mlp.c_proj",
|
| 307 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
| 308 |
+
"transformer.h.14.mlp.c_proj",
|
| 309 |
+
"transformer.h.24.mlp.c_proj",
|
| 310 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
| 311 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
| 312 |
+
"transformer.h.7.mlp.c_proj",
|
| 313 |
+
"transformer.h.14.attn.c_attn",
|
| 314 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
| 315 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
| 316 |
+
"transformer.h.2.attn.c_proj",
|
| 317 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
| 318 |
+
"transformer.h.9.attn.c_attn",
|
| 319 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
| 320 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
| 321 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
| 322 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
| 323 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
| 324 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
| 325 |
+
"transformer.h.25.mlp.w1",
|
| 326 |
+
"transformer.h.10.attn.c_proj",
|
| 327 |
+
"transformer.h.16.mlp.w1",
|
| 328 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
| 329 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
| 330 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
| 331 |
+
"transformer.h.13.mlp.w1",
|
| 332 |
+
"transformer.h.15.mlp.c_proj",
|
| 333 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
| 334 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
| 335 |
+
"transformer.h.10.mlp.c_proj",
|
| 336 |
+
"transformer.h.16.attn.c_proj",
|
| 337 |
+
"transformer.h.6.attn.c_proj",
|
| 338 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
| 339 |
+
"transformer.h.5.attn.c_proj",
|
| 340 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
| 341 |
+
"transformer.h.1.attn.c_proj",
|
| 342 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
| 343 |
+
"transformer.h.5.mlp.w1",
|
| 344 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
| 345 |
+
"transformer.h.6.mlp.c_proj",
|
| 346 |
+
"transformer.h.31.mlp.w2",
|
| 347 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
| 348 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
| 349 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
| 350 |
+
"transformer.h.10.attn.c_attn",
|
| 351 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
| 352 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
| 353 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
| 354 |
+
"transformer.h.25.attn.c_proj",
|
| 355 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
| 356 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
| 357 |
+
"transformer.h.4.mlp.w2",
|
| 358 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
| 359 |
+
"transformer.h.9.mlp.w1",
|
| 360 |
+
"transformer.h.2.mlp.c_proj",
|
| 361 |
+
"transformer.h.22.attn.c_proj",
|
| 362 |
+
"transformer.h.25.mlp.w2",
|
| 363 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
| 364 |
+
"transformer.h.30.attn.c_proj",
|
| 365 |
+
"transformer.h.20.attn.c_proj",
|
| 366 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
| 367 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
| 368 |
+
"transformer.h.3.mlp.w2",
|
| 369 |
+
"transformer.h.19.attn.c_attn",
|
| 370 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
| 371 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
| 372 |
+
"transformer.h.1.attn.c_attn",
|
| 373 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
| 374 |
+
"transformer.h.4.attn.c_proj",
|
| 375 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc"
|
| 376 |
+
],
|
| 377 |
+
"task_type": "CAUSAL_LM",
|
| 378 |
+
"use_dora": false,
|
| 379 |
+
"use_rslora": false
|
| 380 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:690d6b392f8cde40ab1e740a2f4e9793e067b3439b71ee0a595e672b87aa02a0
|
| 3 |
+
size 469105640
|
checkpoint-1200/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: Qwen/Qwen-VL-Chat
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
checkpoint-1200/adapter_config.json
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 16,
|
| 14 |
+
"lora_dropout": 0.05,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 64,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
| 24 |
+
"transformer.h.11.attn.c_attn",
|
| 25 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
| 26 |
+
"transformer.h.26.mlp.c_proj",
|
| 27 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
| 28 |
+
"transformer.h.20.mlp.c_proj",
|
| 29 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
| 30 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
| 31 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
| 32 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
| 33 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
| 34 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
| 35 |
+
"transformer.h.1.mlp.c_proj",
|
| 36 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
| 37 |
+
"transformer.h.28.attn.c_attn",
|
| 38 |
+
"transformer.h.19.attn.c_proj",
|
| 39 |
+
"transformer.h.29.mlp.c_proj",
|
| 40 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
| 41 |
+
"transformer.h.17.attn.c_attn",
|
| 42 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
| 43 |
+
"transformer.h.16.mlp.c_proj",
|
| 44 |
+
"transformer.h.19.mlp.w2",
|
| 45 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
| 46 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
| 47 |
+
"transformer.h.0.mlp.w2",
|
| 48 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
| 49 |
+
"transformer.h.3.mlp.c_proj",
|
| 50 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
| 51 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
| 52 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
| 53 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
| 54 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
| 55 |
+
"transformer.h.0.mlp.w1",
|
| 56 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
| 57 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
| 58 |
+
"transformer.visual.conv1",
|
| 59 |
+
"transformer.h.22.mlp.w2",
|
| 60 |
+
"transformer.h.21.mlp.w2",
|
| 61 |
+
"transformer.h.13.attn.c_attn",
|
| 62 |
+
"transformer.h.10.mlp.w1",
|
| 63 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
| 64 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
| 65 |
+
"transformer.h.16.mlp.w2",
|
| 66 |
+
"transformer.h.8.attn.c_proj",
|
| 67 |
+
"transformer.h.30.mlp.w1",
|
| 68 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
| 69 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
| 70 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
| 71 |
+
"transformer.h.23.attn.c_proj",
|
| 72 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
| 73 |
+
"transformer.h.25.mlp.c_proj",
|
| 74 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
| 75 |
+
"transformer.h.15.attn.c_attn",
|
| 76 |
+
"transformer.h.2.mlp.w1",
|
| 77 |
+
"transformer.h.4.mlp.w1",
|
| 78 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
| 79 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
| 80 |
+
"transformer.h.30.attn.c_attn",
|
| 81 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
| 82 |
+
"transformer.h.8.mlp.c_proj",
|
| 83 |
+
"transformer.h.8.mlp.w2",
|
| 84 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
| 85 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
| 86 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
| 87 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
| 88 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
| 89 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
| 90 |
+
"transformer.h.8.mlp.w1",
|
| 91 |
+
"transformer.h.31.mlp.w1",
|
| 92 |
+
"transformer.h.4.attn.c_attn",
|
| 93 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
| 94 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
| 95 |
+
"transformer.h.13.attn.c_proj",
|
| 96 |
+
"transformer.h.24.attn.c_attn",
|
| 97 |
+
"transformer.h.27.attn.c_attn",
|
| 98 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
| 99 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
| 100 |
+
"transformer.h.31.mlp.c_proj",
|
| 101 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
| 102 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
| 103 |
+
"transformer.h.10.mlp.w2",
|
| 104 |
+
"transformer.h.21.attn.c_attn",
|
| 105 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
| 106 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
| 107 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
| 108 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
| 109 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
| 110 |
+
"transformer.h.18.mlp.w2",
|
| 111 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
| 112 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
| 113 |
+
"transformer.h.12.mlp.w1",
|
| 114 |
+
"transformer.h.7.mlp.w1",
|
| 115 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
| 116 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
| 117 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
| 118 |
+
"transformer.h.23.attn.c_attn",
|
| 119 |
+
"transformer.h.27.mlp.w2",
|
| 120 |
+
"transformer.h.17.mlp.w2",
|
| 121 |
+
"transformer.h.20.mlp.w2",
|
| 122 |
+
"transformer.h.22.mlp.c_proj",
|
| 123 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
| 124 |
+
"transformer.h.27.mlp.c_proj",
|
| 125 |
+
"transformer.h.0.attn.c_proj",
|
| 126 |
+
"transformer.h.5.attn.c_attn",
|
| 127 |
+
"transformer.h.24.mlp.w2",
|
| 128 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
| 129 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
| 130 |
+
"transformer.h.5.mlp.c_proj",
|
| 131 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
| 132 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
| 133 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
| 134 |
+
"transformer.h.26.attn.c_proj",
|
| 135 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
| 136 |
+
"transformer.h.29.attn.c_attn",
|
| 137 |
+
"transformer.h.15.attn.c_proj",
|
| 138 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
| 139 |
+
"transformer.h.4.mlp.c_proj",
|
| 140 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
| 141 |
+
"transformer.h.0.mlp.c_proj",
|
| 142 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
| 143 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
| 144 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
| 145 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
| 146 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
| 147 |
+
"transformer.h.15.mlp.w2",
|
| 148 |
+
"transformer.h.3.attn.c_attn",
|
| 149 |
+
"transformer.h.28.mlp.w1",
|
| 150 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
| 151 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
| 152 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
| 153 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
| 154 |
+
"transformer.h.31.attn.c_proj",
|
| 155 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
| 156 |
+
"transformer.h.17.mlp.w1",
|
| 157 |
+
"transformer.h.18.mlp.c_proj",
|
| 158 |
+
"transformer.h.19.mlp.c_proj",
|
| 159 |
+
"transformer.h.9.mlp.w2",
|
| 160 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
| 161 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
| 162 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
| 163 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
| 164 |
+
"transformer.h.30.mlp.w2",
|
| 165 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
| 166 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
| 167 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
| 168 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
| 169 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
| 170 |
+
"transformer.h.28.mlp.c_proj",
|
| 171 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
| 172 |
+
"transformer.h.22.attn.c_attn",
|
| 173 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
| 174 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
| 175 |
+
"transformer.h.0.attn.c_attn",
|
| 176 |
+
"transformer.h.11.mlp.w2",
|
| 177 |
+
"transformer.h.19.mlp.w1",
|
| 178 |
+
"transformer.h.26.mlp.w2",
|
| 179 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
| 180 |
+
"transformer.h.29.mlp.w2",
|
| 181 |
+
"transformer.h.27.attn.c_proj",
|
| 182 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
| 183 |
+
"transformer.h.17.mlp.c_proj",
|
| 184 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
| 185 |
+
"transformer.h.6.attn.c_attn",
|
| 186 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
| 187 |
+
"transformer.h.21.mlp.w1",
|
| 188 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
| 189 |
+
"transformer.h.20.mlp.w1",
|
| 190 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
| 191 |
+
"transformer.h.23.mlp.c_proj",
|
| 192 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
| 193 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
| 194 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
| 195 |
+
"transformer.h.9.mlp.c_proj",
|
| 196 |
+
"transformer.h.7.attn.c_attn",
|
| 197 |
+
"transformer.h.29.mlp.w1",
|
| 198 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
| 199 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
| 200 |
+
"transformer.h.11.mlp.w1",
|
| 201 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
| 202 |
+
"transformer.h.5.mlp.w2",
|
| 203 |
+
"transformer.h.11.attn.c_proj",
|
| 204 |
+
"transformer.h.18.attn.c_attn",
|
| 205 |
+
"transformer.h.6.mlp.w1",
|
| 206 |
+
"transformer.h.27.mlp.w1",
|
| 207 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
| 208 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
| 209 |
+
"transformer.h.25.attn.c_attn",
|
| 210 |
+
"transformer.h.1.mlp.w2",
|
| 211 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
| 212 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
| 213 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
| 214 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
| 215 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
| 216 |
+
"transformer.h.14.mlp.w1",
|
| 217 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
| 218 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
| 219 |
+
"transformer.h.16.attn.c_attn",
|
| 220 |
+
"transformer.h.3.mlp.w1",
|
| 221 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
| 222 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
| 223 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
| 224 |
+
"transformer.h.15.mlp.w1",
|
| 225 |
+
"transformer.h.9.attn.c_proj",
|
| 226 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
| 227 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
| 228 |
+
"transformer.h.12.attn.c_attn",
|
| 229 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
| 230 |
+
"transformer.h.28.attn.c_proj",
|
| 231 |
+
"transformer.h.13.mlp.w2",
|
| 232 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
| 233 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
| 234 |
+
"transformer.h.22.mlp.w1",
|
| 235 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
| 236 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
| 237 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
| 238 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
| 239 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
| 240 |
+
"transformer.h.24.mlp.w1",
|
| 241 |
+
"transformer.h.12.mlp.w2",
|
| 242 |
+
"transformer.h.30.mlp.c_proj",
|
| 243 |
+
"transformer.h.3.attn.c_proj",
|
| 244 |
+
"transformer.h.11.mlp.c_proj",
|
| 245 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
| 246 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
| 247 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
| 248 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
| 249 |
+
"transformer.h.18.mlp.w1",
|
| 250 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
| 251 |
+
"transformer.h.23.mlp.w1",
|
| 252 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
| 253 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
| 254 |
+
"transformer.h.1.mlp.w1",
|
| 255 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
| 256 |
+
"transformer.h.29.attn.c_proj",
|
| 257 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
| 258 |
+
"transformer.h.21.attn.c_proj",
|
| 259 |
+
"transformer.h.7.attn.c_proj",
|
| 260 |
+
"transformer.h.12.mlp.c_proj",
|
| 261 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
| 262 |
+
"transformer.h.17.attn.c_proj",
|
| 263 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
| 264 |
+
"transformer.h.20.attn.c_attn",
|
| 265 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
| 266 |
+
"transformer.h.14.attn.c_proj",
|
| 267 |
+
"transformer.h.13.mlp.c_proj",
|
| 268 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
| 269 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
| 270 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
| 271 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
| 272 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
| 273 |
+
"transformer.h.23.mlp.w2",
|
| 274 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
| 275 |
+
"transformer.h.8.attn.c_attn",
|
| 276 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
| 277 |
+
"transformer.h.14.mlp.w2",
|
| 278 |
+
"transformer.h.7.mlp.w2",
|
| 279 |
+
"transformer.h.26.mlp.w1",
|
| 280 |
+
"transformer.h.6.mlp.w2",
|
| 281 |
+
"transformer.h.31.attn.c_attn",
|
| 282 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
| 283 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
| 284 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
| 285 |
+
"transformer.h.28.mlp.w2",
|
| 286 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
| 287 |
+
"transformer.h.2.mlp.w2",
|
| 288 |
+
"transformer.h.2.attn.c_attn",
|
| 289 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
| 290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
| 291 |
+
"transformer.h.18.attn.c_proj",
|
| 292 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
| 293 |
+
"transformer.h.12.attn.c_proj",
|
| 294 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
| 295 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
| 296 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
| 297 |
+
"transformer.h.24.attn.c_proj",
|
| 298 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
| 299 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
| 300 |
+
"transformer.h.26.attn.c_attn",
|
| 301 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
| 302 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
| 303 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
| 304 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
| 305 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
| 306 |
+
"transformer.h.21.mlp.c_proj",
|
| 307 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
| 308 |
+
"transformer.h.14.mlp.c_proj",
|
| 309 |
+
"transformer.h.24.mlp.c_proj",
|
| 310 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
| 311 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
| 312 |
+
"transformer.h.7.mlp.c_proj",
|
| 313 |
+
"transformer.h.14.attn.c_attn",
|
| 314 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
| 315 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
| 316 |
+
"transformer.h.2.attn.c_proj",
|
| 317 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
| 318 |
+
"transformer.h.9.attn.c_attn",
|
| 319 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
| 320 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
| 321 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
| 322 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
| 323 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
| 324 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
| 325 |
+
"transformer.h.25.mlp.w1",
|
| 326 |
+
"transformer.h.10.attn.c_proj",
|
| 327 |
+
"transformer.h.16.mlp.w1",
|
| 328 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
| 329 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
| 330 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
| 331 |
+
"transformer.h.13.mlp.w1",
|
| 332 |
+
"transformer.h.15.mlp.c_proj",
|
| 333 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
| 334 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
| 335 |
+
"transformer.h.10.mlp.c_proj",
|
| 336 |
+
"transformer.h.16.attn.c_proj",
|
| 337 |
+
"transformer.h.6.attn.c_proj",
|
| 338 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
| 339 |
+
"transformer.h.5.attn.c_proj",
|
| 340 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
| 341 |
+
"transformer.h.1.attn.c_proj",
|
| 342 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
| 343 |
+
"transformer.h.5.mlp.w1",
|
| 344 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
| 345 |
+
"transformer.h.6.mlp.c_proj",
|
| 346 |
+
"transformer.h.31.mlp.w2",
|
| 347 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
| 348 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
| 349 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
| 350 |
+
"transformer.h.10.attn.c_attn",
|
| 351 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
| 352 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
| 353 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
| 354 |
+
"transformer.h.25.attn.c_proj",
|
| 355 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
| 356 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
| 357 |
+
"transformer.h.4.mlp.w2",
|
| 358 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
| 359 |
+
"transformer.h.9.mlp.w1",
|
| 360 |
+
"transformer.h.2.mlp.c_proj",
|
| 361 |
+
"transformer.h.22.attn.c_proj",
|
| 362 |
+
"transformer.h.25.mlp.w2",
|
| 363 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
| 364 |
+
"transformer.h.30.attn.c_proj",
|
| 365 |
+
"transformer.h.20.attn.c_proj",
|
| 366 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
| 367 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
| 368 |
+
"transformer.h.3.mlp.w2",
|
| 369 |
+
"transformer.h.19.attn.c_attn",
|
| 370 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
| 371 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
| 372 |
+
"transformer.h.1.attn.c_attn",
|
| 373 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
| 374 |
+
"transformer.h.4.attn.c_proj",
|
| 375 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc"
|
| 376 |
+
],
|
| 377 |
+
"task_type": "CAUSAL_LM",
|
| 378 |
+
"use_dora": false,
|
| 379 |
+
"use_rslora": false
|
| 380 |
+
}
|
checkpoint-1200/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ea4945fb754dd0c2ddeab9413e2a2037c9d7f18025a14f79a556365d19d872f
|
| 3 |
+
size 469105640
|
checkpoint-1200/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1200
|
checkpoint-1200/qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1200/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:336248bbe8a4fee02df88588f7f7dc1b33253e35723db0c2b4226da31752a2d3
|
| 3 |
+
size 14960
|
checkpoint-1200/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e29d9da4dc40c9b6b09b727757e4b19b448bc1dfeb00627e256a8e07f67e4da9
|
| 3 |
+
size 14960
|
checkpoint-1200/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4ae0fe36d0ba0ead4de4005e87904f5e4d9dec09a80b2e4db5ec0c80a0ea346
|
| 3 |
+
size 14960
|
checkpoint-1200/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9087f0ffb3a26097f004f56dccdbf08eec0c5cc75577bc9d741246ab7c60a229
|
| 3 |
+
size 14960
|
checkpoint-1200/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:80613ac1f3063b2760ed75829d953d81b43e14572849068a9f7570742ebc5962
|
| 3 |
+
size 1064
|
checkpoint-1200/special_tokens_map.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"pad_token": "<|endoftext|>"
|
| 3 |
+
}
|
checkpoint-1200/tokenizer_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {},
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoTokenizer": [
|
| 5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
| 6 |
+
null
|
| 7 |
+
]
|
| 8 |
+
},
|
| 9 |
+
"clean_up_tokenization_spaces": true,
|
| 10 |
+
"model_max_length": 1280,
|
| 11 |
+
"pad_token": "<|endoftext|>",
|
| 12 |
+
"padding_side": "right",
|
| 13 |
+
"tokenizer_class": "QWenTokenizer"
|
| 14 |
+
}
|
checkpoint-1200/trainer_state.json
ADDED
|
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.20191822311963656,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 1200,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0016826518593303045,
|
| 13 |
+
"grad_norm": 3.75418950341011,
|
| 14 |
+
"learning_rate": 4.9999999999999996e-06,
|
| 15 |
+
"loss": 0.9983,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.003365303718660609,
|
| 20 |
+
"grad_norm": 4.027030925274863,
|
| 21 |
+
"learning_rate": 9.999999999999999e-06,
|
| 22 |
+
"loss": 0.9697,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.005047955577990914,
|
| 27 |
+
"grad_norm": 4.048987349136423,
|
| 28 |
+
"learning_rate": 1.5e-05,
|
| 29 |
+
"loss": 0.9412,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.006730607437321218,
|
| 34 |
+
"grad_norm": 5.720158971431411,
|
| 35 |
+
"learning_rate": 1.9999999999999998e-05,
|
| 36 |
+
"loss": 0.8783,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.008413259296651522,
|
| 41 |
+
"grad_norm": 4.718965032869529,
|
| 42 |
+
"learning_rate": 2.5e-05,
|
| 43 |
+
"loss": 0.8454,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.010095911155981827,
|
| 48 |
+
"grad_norm": 3.5785181087788835,
|
| 49 |
+
"learning_rate": 3e-05,
|
| 50 |
+
"loss": 0.809,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.011778563015312132,
|
| 55 |
+
"grad_norm": 4.11981684712826,
|
| 56 |
+
"learning_rate": 2.9999786123888308e-05,
|
| 57 |
+
"loss": 0.7556,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.013461214874642436,
|
| 62 |
+
"grad_norm": 6.082559649594005,
|
| 63 |
+
"learning_rate": 2.9999144501652298e-05,
|
| 64 |
+
"loss": 0.7613,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.01514386673397274,
|
| 69 |
+
"grad_norm": 1.957553999291205,
|
| 70 |
+
"learning_rate": 2.9998075151588992e-05,
|
| 71 |
+
"loss": 0.7784,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.016826518593303044,
|
| 76 |
+
"grad_norm": 1.6706087540201593,
|
| 77 |
+
"learning_rate": 2.999657810419285e-05,
|
| 78 |
+
"loss": 0.7658,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.01850917045263335,
|
| 83 |
+
"grad_norm": 2.909734954037323,
|
| 84 |
+
"learning_rate": 2.999465340215489e-05,
|
| 85 |
+
"loss": 0.7331,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.020191822311963654,
|
| 90 |
+
"grad_norm": 1.977272298268717,
|
| 91 |
+
"learning_rate": 2.999230110036149e-05,
|
| 92 |
+
"loss": 0.7507,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.02187447417129396,
|
| 97 |
+
"grad_norm": 1.8089524113272115,
|
| 98 |
+
"learning_rate": 2.99895212658928e-05,
|
| 99 |
+
"loss": 0.7309,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.023557126030624265,
|
| 104 |
+
"grad_norm": 2.134962179309057,
|
| 105 |
+
"learning_rate": 2.9986313978020846e-05,
|
| 106 |
+
"loss": 0.721,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.02523977788995457,
|
| 111 |
+
"grad_norm": 11.10353091330302,
|
| 112 |
+
"learning_rate": 2.9982679328207262e-05,
|
| 113 |
+
"loss": 0.7338,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.02692242974928487,
|
| 118 |
+
"grad_norm": 1.4444344817739057,
|
| 119 |
+
"learning_rate": 2.9978617420100692e-05,
|
| 120 |
+
"loss": 0.7227,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.028605081608615177,
|
| 125 |
+
"grad_norm": 1.453288161439029,
|
| 126 |
+
"learning_rate": 2.9974128369533805e-05,
|
| 127 |
+
"loss": 0.7107,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.03028773346794548,
|
| 132 |
+
"grad_norm": 3.475164856876678,
|
| 133 |
+
"learning_rate": 2.9969212304520034e-05,
|
| 134 |
+
"loss": 0.7303,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.03197038532727579,
|
| 139 |
+
"grad_norm": 1.1636824531496957,
|
| 140 |
+
"learning_rate": 2.9963869365249895e-05,
|
| 141 |
+
"loss": 0.6688,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.03365303718660609,
|
| 146 |
+
"grad_norm": 1.8518695174363622,
|
| 147 |
+
"learning_rate": 2.995809970408699e-05,
|
| 148 |
+
"loss": 0.7003,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.0353356890459364,
|
| 153 |
+
"grad_norm": 4.09791760479377,
|
| 154 |
+
"learning_rate": 2.9951903485563685e-05,
|
| 155 |
+
"loss": 0.7442,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.0370183409052667,
|
| 160 |
+
"grad_norm": 2.4987929291159956,
|
| 161 |
+
"learning_rate": 2.99452808863764e-05,
|
| 162 |
+
"loss": 0.7517,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.03870099276459701,
|
| 167 |
+
"grad_norm": 3.4584802037194087,
|
| 168 |
+
"learning_rate": 2.993823209538056e-05,
|
| 169 |
+
"loss": 0.7537,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.04038364462392731,
|
| 174 |
+
"grad_norm": 2.511130636368107,
|
| 175 |
+
"learning_rate": 2.9930757313585238e-05,
|
| 176 |
+
"loss": 0.7599,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.04206629648325761,
|
| 181 |
+
"grad_norm": 1.7030446444812277,
|
| 182 |
+
"learning_rate": 2.9922856754147406e-05,
|
| 183 |
+
"loss": 0.7126,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.04374894834258792,
|
| 188 |
+
"grad_norm": 4.790377413030976,
|
| 189 |
+
"learning_rate": 2.9914530642365852e-05,
|
| 190 |
+
"loss": 0.72,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.04543160020191822,
|
| 195 |
+
"grad_norm": 2.0321244924961976,
|
| 196 |
+
"learning_rate": 2.990577921567476e-05,
|
| 197 |
+
"loss": 0.6733,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.04711425206124853,
|
| 202 |
+
"grad_norm": 2.310370624749643,
|
| 203 |
+
"learning_rate": 2.989660272363696e-05,
|
| 204 |
+
"loss": 0.7212,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.04879690392057883,
|
| 209 |
+
"grad_norm": 3.451763592410144,
|
| 210 |
+
"learning_rate": 2.988700142793676e-05,
|
| 211 |
+
"loss": 0.7237,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.05047955577990914,
|
| 216 |
+
"grad_norm": 5.317302731978485,
|
| 217 |
+
"learning_rate": 2.9876975602372536e-05,
|
| 218 |
+
"loss": 0.7558,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.05216220763923944,
|
| 223 |
+
"grad_norm": 2.3026448136142914,
|
| 224 |
+
"learning_rate": 2.9866525532848906e-05,
|
| 225 |
+
"loss": 0.6985,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.05384485949856974,
|
| 230 |
+
"grad_norm": 1.8320545447196381,
|
| 231 |
+
"learning_rate": 2.9855651517368567e-05,
|
| 232 |
+
"loss": 0.7227,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.05552751135790005,
|
| 237 |
+
"grad_norm": 1.9908218789466392,
|
| 238 |
+
"learning_rate": 2.9844353866023802e-05,
|
| 239 |
+
"loss": 0.7075,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.05721016321723035,
|
| 244 |
+
"grad_norm": 5.182840115712529,
|
| 245 |
+
"learning_rate": 2.9832632900987642e-05,
|
| 246 |
+
"loss": 0.7207,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.05889281507656066,
|
| 251 |
+
"grad_norm": 1.5483797249278837,
|
| 252 |
+
"learning_rate": 2.982048895650468e-05,
|
| 253 |
+
"loss": 0.7233,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.06057546693589096,
|
| 258 |
+
"grad_norm": 2.3382590504722693,
|
| 259 |
+
"learning_rate": 2.9807922378881537e-05,
|
| 260 |
+
"loss": 0.7002,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.06225811879522127,
|
| 265 |
+
"grad_norm": 3.1859655239636937,
|
| 266 |
+
"learning_rate": 2.979493352647697e-05,
|
| 267 |
+
"loss": 0.7201,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.06394077065455157,
|
| 272 |
+
"grad_norm": 0.9149159742557087,
|
| 273 |
+
"learning_rate": 2.9781522769691686e-05,
|
| 274 |
+
"loss": 0.7136,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.06562342251388188,
|
| 279 |
+
"grad_norm": 10.861566072795899,
|
| 280 |
+
"learning_rate": 2.9767690490957758e-05,
|
| 281 |
+
"loss": 0.7068,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.06730607437321218,
|
| 286 |
+
"grad_norm": 2.8618866775651006,
|
| 287 |
+
"learning_rate": 2.9753437084727713e-05,
|
| 288 |
+
"loss": 0.7239,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.06898872623254249,
|
| 293 |
+
"grad_norm": 2.8726068570785097,
|
| 294 |
+
"learning_rate": 2.9738762957463292e-05,
|
| 295 |
+
"loss": 0.7245,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.0706713780918728,
|
| 300 |
+
"grad_norm": 2.4481298042739112,
|
| 301 |
+
"learning_rate": 2.9723668527623877e-05,
|
| 302 |
+
"loss": 0.7752,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.0723540299512031,
|
| 307 |
+
"grad_norm": 1.8599931346602536,
|
| 308 |
+
"learning_rate": 2.9708154225654526e-05,
|
| 309 |
+
"loss": 0.7323,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.0740366818105334,
|
| 314 |
+
"grad_norm": 1.2855737813743626,
|
| 315 |
+
"learning_rate": 2.9692220493973712e-05,
|
| 316 |
+
"loss": 0.7037,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.0757193336698637,
|
| 321 |
+
"grad_norm": 4.629091463528233,
|
| 322 |
+
"learning_rate": 2.9675867786960718e-05,
|
| 323 |
+
"loss": 0.6867,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.07740198552919401,
|
| 328 |
+
"grad_norm": 6.294427059845777,
|
| 329 |
+
"learning_rate": 2.9659096570942654e-05,
|
| 330 |
+
"loss": 0.7272,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.07908463738852431,
|
| 335 |
+
"grad_norm": 2.4758348810051345,
|
| 336 |
+
"learning_rate": 2.9641907324181194e-05,
|
| 337 |
+
"loss": 0.6779,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.08076728924785462,
|
| 342 |
+
"grad_norm": 1.3455245255212915,
|
| 343 |
+
"learning_rate": 2.96243005368589e-05,
|
| 344 |
+
"loss": 0.7051,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.08244994110718493,
|
| 349 |
+
"grad_norm": 4.796150475871981,
|
| 350 |
+
"learning_rate": 2.960627671106527e-05,
|
| 351 |
+
"loss": 0.7547,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.08413259296651522,
|
| 356 |
+
"grad_norm": 2.684441445075641,
|
| 357 |
+
"learning_rate": 2.9587836360782405e-05,
|
| 358 |
+
"loss": 0.709,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.08581524482584553,
|
| 363 |
+
"grad_norm": 1.3869329152815553,
|
| 364 |
+
"learning_rate": 2.9568980011870357e-05,
|
| 365 |
+
"loss": 0.7073,
|
| 366 |
+
"step": 510
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.08749789668517584,
|
| 370 |
+
"grad_norm": 2.5576974478207197,
|
| 371 |
+
"learning_rate": 2.954970820205214e-05,
|
| 372 |
+
"loss": 0.6918,
|
| 373 |
+
"step": 520
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.08918054854450615,
|
| 377 |
+
"grad_norm": 1.1525450967004647,
|
| 378 |
+
"learning_rate": 2.9530021480898393e-05,
|
| 379 |
+
"loss": 0.6698,
|
| 380 |
+
"step": 530
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.09086320040383644,
|
| 384 |
+
"grad_norm": 2.847083851829901,
|
| 385 |
+
"learning_rate": 2.9509920409811696e-05,
|
| 386 |
+
"loss": 0.671,
|
| 387 |
+
"step": 540
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.09254585226316675,
|
| 391 |
+
"grad_norm": 2.561042091789346,
|
| 392 |
+
"learning_rate": 2.9489405562010565e-05,
|
| 393 |
+
"loss": 0.75,
|
| 394 |
+
"step": 550
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.09422850412249706,
|
| 398 |
+
"grad_norm": 4.458337350053255,
|
| 399 |
+
"learning_rate": 2.9468477522513132e-05,
|
| 400 |
+
"loss": 0.7277,
|
| 401 |
+
"step": 560
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.09591115598182735,
|
| 405 |
+
"grad_norm": 3.114622509219852,
|
| 406 |
+
"learning_rate": 2.9447136888120408e-05,
|
| 407 |
+
"loss": 0.6967,
|
| 408 |
+
"step": 570
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.09759380784115766,
|
| 412 |
+
"grad_norm": 1.6295210229360877,
|
| 413 |
+
"learning_rate": 2.9425384267399327e-05,
|
| 414 |
+
"loss": 0.6867,
|
| 415 |
+
"step": 580
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.09927645970048797,
|
| 419 |
+
"grad_norm": 1.7579117810504754,
|
| 420 |
+
"learning_rate": 2.940322028066534e-05,
|
| 421 |
+
"loss": 0.7236,
|
| 422 |
+
"step": 590
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.10095911155981828,
|
| 426 |
+
"grad_norm": 1.788183804411441,
|
| 427 |
+
"learning_rate": 2.938064555996476e-05,
|
| 428 |
+
"loss": 0.6864,
|
| 429 |
+
"step": 600
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.10264176341914857,
|
| 433 |
+
"grad_norm": 2.8340511721646373,
|
| 434 |
+
"learning_rate": 2.9357660749056713e-05,
|
| 435 |
+
"loss": 0.6847,
|
| 436 |
+
"step": 610
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.10432441527847888,
|
| 440 |
+
"grad_norm": 2.5230840193297985,
|
| 441 |
+
"learning_rate": 2.9334266503394803e-05,
|
| 442 |
+
"loss": 0.6889,
|
| 443 |
+
"step": 620
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.10600706713780919,
|
| 447 |
+
"grad_norm": 7.346086885083334,
|
| 448 |
+
"learning_rate": 2.9310463490108397e-05,
|
| 449 |
+
"loss": 0.7419,
|
| 450 |
+
"step": 630
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.10768971899713949,
|
| 454 |
+
"grad_norm": 2.356832890545339,
|
| 455 |
+
"learning_rate": 2.928625238798362e-05,
|
| 456 |
+
"loss": 0.7369,
|
| 457 |
+
"step": 640
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.1093723708564698,
|
| 461 |
+
"grad_norm": 2.4978380391841095,
|
| 462 |
+
"learning_rate": 2.9261633887443993e-05,
|
| 463 |
+
"loss": 0.6948,
|
| 464 |
+
"step": 650
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.1110550227158001,
|
| 468 |
+
"grad_norm": 3.535487375505793,
|
| 469 |
+
"learning_rate": 2.9236608690530738e-05,
|
| 470 |
+
"loss": 0.7081,
|
| 471 |
+
"step": 660
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.11273767457513041,
|
| 475 |
+
"grad_norm": 2.522638625540884,
|
| 476 |
+
"learning_rate": 2.921117751088276e-05,
|
| 477 |
+
"loss": 0.7191,
|
| 478 |
+
"step": 670
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.1144203264344607,
|
| 482 |
+
"grad_norm": 3.055823541699581,
|
| 483 |
+
"learning_rate": 2.91853410737163e-05,
|
| 484 |
+
"loss": 0.74,
|
| 485 |
+
"step": 680
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.11610297829379101,
|
| 489 |
+
"grad_norm": 3.270117047516123,
|
| 490 |
+
"learning_rate": 2.915910011580426e-05,
|
| 491 |
+
"loss": 0.6829,
|
| 492 |
+
"step": 690
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.11778563015312132,
|
| 496 |
+
"grad_norm": 2.3219806056695367,
|
| 497 |
+
"learning_rate": 2.9132455385455176e-05,
|
| 498 |
+
"loss": 0.7062,
|
| 499 |
+
"step": 700
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.11946828201245162,
|
| 503 |
+
"grad_norm": 1.541921603113568,
|
| 504 |
+
"learning_rate": 2.9105407642491895e-05,
|
| 505 |
+
"loss": 0.7217,
|
| 506 |
+
"step": 710
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.12115093387178193,
|
| 510 |
+
"grad_norm": 1.557595298876376,
|
| 511 |
+
"learning_rate": 2.907795765822989e-05,
|
| 512 |
+
"loss": 0.7083,
|
| 513 |
+
"step": 720
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.12283358573111224,
|
| 517 |
+
"grad_norm": 2.3829156571868753,
|
| 518 |
+
"learning_rate": 2.9050106215455283e-05,
|
| 519 |
+
"loss": 0.6992,
|
| 520 |
+
"step": 730
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.12451623759044254,
|
| 524 |
+
"grad_norm": 7.536777098548366,
|
| 525 |
+
"learning_rate": 2.9021854108402516e-05,
|
| 526 |
+
"loss": 0.7248,
|
| 527 |
+
"step": 740
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.12619888944977284,
|
| 531 |
+
"grad_norm": 1.3408030642895519,
|
| 532 |
+
"learning_rate": 2.8993202142731693e-05,
|
| 533 |
+
"loss": 0.6375,
|
| 534 |
+
"step": 750
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.12788154130910315,
|
| 538 |
+
"grad_norm": 2.4880776314537254,
|
| 539 |
+
"learning_rate": 2.8964151135505616e-05,
|
| 540 |
+
"loss": 0.7063,
|
| 541 |
+
"step": 760
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.12956419316843346,
|
| 545 |
+
"grad_norm": 1.5507053769862247,
|
| 546 |
+
"learning_rate": 2.8934701915166477e-05,
|
| 547 |
+
"loss": 0.73,
|
| 548 |
+
"step": 770
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.13124684502776376,
|
| 552 |
+
"grad_norm": 3.5622930633942564,
|
| 553 |
+
"learning_rate": 2.890485532151225e-05,
|
| 554 |
+
"loss": 0.7521,
|
| 555 |
+
"step": 780
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.13292949688709407,
|
| 559 |
+
"grad_norm": 4.188153799459233,
|
| 560 |
+
"learning_rate": 2.887461220567271e-05,
|
| 561 |
+
"loss": 0.6841,
|
| 562 |
+
"step": 790
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.13461214874642435,
|
| 566 |
+
"grad_norm": 2.702901312773331,
|
| 567 |
+
"learning_rate": 2.8843973430085204e-05,
|
| 568 |
+
"loss": 0.694,
|
| 569 |
+
"step": 800
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.13629480060575466,
|
| 573 |
+
"grad_norm": 3.8663384632605293,
|
| 574 |
+
"learning_rate": 2.8812939868470016e-05,
|
| 575 |
+
"loss": 0.7376,
|
| 576 |
+
"step": 810
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.13797745246508497,
|
| 580 |
+
"grad_norm": 7.613582881082294,
|
| 581 |
+
"learning_rate": 2.878151240580548e-05,
|
| 582 |
+
"loss": 0.7082,
|
| 583 |
+
"step": 820
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.13966010432441528,
|
| 587 |
+
"grad_norm": 2.8755666754814015,
|
| 588 |
+
"learning_rate": 2.874969193830274e-05,
|
| 589 |
+
"loss": 0.7486,
|
| 590 |
+
"step": 830
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.1413427561837456,
|
| 594 |
+
"grad_norm": 2.049640563529798,
|
| 595 |
+
"learning_rate": 2.871747937338016e-05,
|
| 596 |
+
"loss": 0.7375,
|
| 597 |
+
"step": 840
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.1430254080430759,
|
| 601 |
+
"grad_norm": 3.2253208680917993,
|
| 602 |
+
"learning_rate": 2.8684875629637505e-05,
|
| 603 |
+
"loss": 0.7183,
|
| 604 |
+
"step": 850
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.1447080599024062,
|
| 608 |
+
"grad_norm": 2.0453993741696306,
|
| 609 |
+
"learning_rate": 2.8651881636829698e-05,
|
| 610 |
+
"loss": 0.6953,
|
| 611 |
+
"step": 860
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.1463907117617365,
|
| 615 |
+
"grad_norm": 1.3478445170381042,
|
| 616 |
+
"learning_rate": 2.861849833584032e-05,
|
| 617 |
+
"loss": 0.7205,
|
| 618 |
+
"step": 870
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.1480733636210668,
|
| 622 |
+
"grad_norm": 6.483405424500114,
|
| 623 |
+
"learning_rate": 2.8584726678654787e-05,
|
| 624 |
+
"loss": 0.7331,
|
| 625 |
+
"step": 880
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.1497560154803971,
|
| 629 |
+
"grad_norm": 1.6912080503281164,
|
| 630 |
+
"learning_rate": 2.85505676283332e-05,
|
| 631 |
+
"loss": 0.6985,
|
| 632 |
+
"step": 890
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.1514386673397274,
|
| 636 |
+
"grad_norm": 2.089097733011486,
|
| 637 |
+
"learning_rate": 2.851602215898287e-05,
|
| 638 |
+
"loss": 0.7291,
|
| 639 |
+
"step": 900
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.15312131919905772,
|
| 643 |
+
"grad_norm": 3.3599665631038325,
|
| 644 |
+
"learning_rate": 2.8481091255730552e-05,
|
| 645 |
+
"loss": 0.7125,
|
| 646 |
+
"step": 910
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.15480397105838803,
|
| 650 |
+
"grad_norm": 5.803874517218743,
|
| 651 |
+
"learning_rate": 2.844577591469435e-05,
|
| 652 |
+
"loss": 0.6614,
|
| 653 |
+
"step": 920
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.15648662291771834,
|
| 657 |
+
"grad_norm": 4.180624256153927,
|
| 658 |
+
"learning_rate": 2.8410077142955304e-05,
|
| 659 |
+
"loss": 0.6921,
|
| 660 |
+
"step": 930
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.15816927477704862,
|
| 664 |
+
"grad_norm": 2.51395384445247,
|
| 665 |
+
"learning_rate": 2.8373995958528683e-05,
|
| 666 |
+
"loss": 0.6788,
|
| 667 |
+
"step": 940
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.15985192663637893,
|
| 671 |
+
"grad_norm": 2.0786229734439,
|
| 672 |
+
"learning_rate": 2.8337533390334942e-05,
|
| 673 |
+
"loss": 0.6324,
|
| 674 |
+
"step": 950
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.16153457849570924,
|
| 678 |
+
"grad_norm": 2.1798201763285774,
|
| 679 |
+
"learning_rate": 2.8300690478170388e-05,
|
| 680 |
+
"loss": 0.7128,
|
| 681 |
+
"step": 960
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.16321723035503954,
|
| 685 |
+
"grad_norm": 1.7736042633296192,
|
| 686 |
+
"learning_rate": 2.826346827267753e-05,
|
| 687 |
+
"loss": 0.6854,
|
| 688 |
+
"step": 970
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.16489988221436985,
|
| 692 |
+
"grad_norm": 3.6499571810784377,
|
| 693 |
+
"learning_rate": 2.8225867835315114e-05,
|
| 694 |
+
"loss": 0.7246,
|
| 695 |
+
"step": 980
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.16658253407370016,
|
| 699 |
+
"grad_norm": 8.401076529411414,
|
| 700 |
+
"learning_rate": 2.8187890238327842e-05,
|
| 701 |
+
"loss": 0.7166,
|
| 702 |
+
"step": 990
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.16826518593303044,
|
| 706 |
+
"grad_norm": 1.6815155727131568,
|
| 707 |
+
"learning_rate": 2.814953656471583e-05,
|
| 708 |
+
"loss": 0.6962,
|
| 709 |
+
"step": 1000
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.16994783779236075,
|
| 713 |
+
"grad_norm": 3.59100648398944,
|
| 714 |
+
"learning_rate": 2.8110807908203682e-05,
|
| 715 |
+
"loss": 0.7271,
|
| 716 |
+
"step": 1010
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.17163048965169106,
|
| 720 |
+
"grad_norm": 2.9612400836384034,
|
| 721 |
+
"learning_rate": 2.8071705373209328e-05,
|
| 722 |
+
"loss": 0.7048,
|
| 723 |
+
"step": 1020
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.17331314151102137,
|
| 727 |
+
"grad_norm": 1.6314524411685434,
|
| 728 |
+
"learning_rate": 2.803223007481252e-05,
|
| 729 |
+
"loss": 0.7237,
|
| 730 |
+
"step": 1030
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.17499579337035168,
|
| 734 |
+
"grad_norm": 4.046292885407821,
|
| 735 |
+
"learning_rate": 2.7992383138723034e-05,
|
| 736 |
+
"loss": 0.7066,
|
| 737 |
+
"step": 1040
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.17667844522968199,
|
| 741 |
+
"grad_norm": 3.4626891652569665,
|
| 742 |
+
"learning_rate": 2.7952165701248573e-05,
|
| 743 |
+
"loss": 0.7537,
|
| 744 |
+
"step": 1050
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.1783610970890123,
|
| 748 |
+
"grad_norm": 4.129895397644279,
|
| 749 |
+
"learning_rate": 2.7911578909262353e-05,
|
| 750 |
+
"loss": 0.7348,
|
| 751 |
+
"step": 1060
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.18004374894834257,
|
| 755 |
+
"grad_norm": 2.1894044487856847,
|
| 756 |
+
"learning_rate": 2.787062392017041e-05,
|
| 757 |
+
"loss": 0.7145,
|
| 758 |
+
"step": 1070
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.18172640080767288,
|
| 762 |
+
"grad_norm": 2.988495224416439,
|
| 763 |
+
"learning_rate": 2.7829301901878592e-05,
|
| 764 |
+
"loss": 0.7091,
|
| 765 |
+
"step": 1080
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.1834090526670032,
|
| 769 |
+
"grad_norm": 2.493227176786327,
|
| 770 |
+
"learning_rate": 2.7787614032759243e-05,
|
| 771 |
+
"loss": 0.7427,
|
| 772 |
+
"step": 1090
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.1850917045263335,
|
| 776 |
+
"grad_norm": 2.9382266505350723,
|
| 777 |
+
"learning_rate": 2.7745561501617605e-05,
|
| 778 |
+
"loss": 0.7081,
|
| 779 |
+
"step": 1100
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.1867743563856638,
|
| 783 |
+
"grad_norm": 1.9294251174769146,
|
| 784 |
+
"learning_rate": 2.7703145507657923e-05,
|
| 785 |
+
"loss": 0.679,
|
| 786 |
+
"step": 1110
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.18845700824499412,
|
| 790 |
+
"grad_norm": 7.011830550553666,
|
| 791 |
+
"learning_rate": 2.766036726044926e-05,
|
| 792 |
+
"loss": 0.6962,
|
| 793 |
+
"step": 1120
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.19013966010432443,
|
| 797 |
+
"grad_norm": 1.8058177496791177,
|
| 798 |
+
"learning_rate": 2.7617227979890957e-05,
|
| 799 |
+
"loss": 0.6953,
|
| 800 |
+
"step": 1130
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.1918223119636547,
|
| 804 |
+
"grad_norm": 2.2546595962288727,
|
| 805 |
+
"learning_rate": 2.7573728896177897e-05,
|
| 806 |
+
"loss": 0.6853,
|
| 807 |
+
"step": 1140
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.19350496382298502,
|
| 811 |
+
"grad_norm": 1.7701647300358836,
|
| 812 |
+
"learning_rate": 2.7529871249765397e-05,
|
| 813 |
+
"loss": 0.737,
|
| 814 |
+
"step": 1150
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.19518761568231532,
|
| 818 |
+
"grad_norm": 3.2767535691041396,
|
| 819 |
+
"learning_rate": 2.7485656291333845e-05,
|
| 820 |
+
"loss": 0.6878,
|
| 821 |
+
"step": 1160
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.19687026754164563,
|
| 825 |
+
"grad_norm": 1.231100350207441,
|
| 826 |
+
"learning_rate": 2.7441085281753028e-05,
|
| 827 |
+
"loss": 0.7044,
|
| 828 |
+
"step": 1170
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.19855291940097594,
|
| 832 |
+
"grad_norm": 5.103379397758491,
|
| 833 |
+
"learning_rate": 2.739615949204617e-05,
|
| 834 |
+
"loss": 0.7028,
|
| 835 |
+
"step": 1180
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.20023557126030625,
|
| 839 |
+
"grad_norm": 1.745258105735824,
|
| 840 |
+
"learning_rate": 2.7350880203353703e-05,
|
| 841 |
+
"loss": 0.7123,
|
| 842 |
+
"step": 1190
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.20191822311963656,
|
| 846 |
+
"grad_norm": 2.528898960464809,
|
| 847 |
+
"learning_rate": 2.7305248706896722e-05,
|
| 848 |
+
"loss": 0.7242,
|
| 849 |
+
"step": 1200
|
| 850 |
+
}
|
| 851 |
+
],
|
| 852 |
+
"logging_steps": 10,
|
| 853 |
+
"max_steps": 5943,
|
| 854 |
+
"num_input_tokens_seen": 0,
|
| 855 |
+
"num_train_epochs": 1,
|
| 856 |
+
"save_steps": 400,
|
| 857 |
+
"stateful_callbacks": {
|
| 858 |
+
"TrainerControl": {
|
| 859 |
+
"args": {
|
| 860 |
+
"should_epoch_stop": false,
|
| 861 |
+
"should_evaluate": false,
|
| 862 |
+
"should_log": false,
|
| 863 |
+
"should_save": true,
|
| 864 |
+
"should_training_stop": false
|
| 865 |
+
},
|
| 866 |
+
"attributes": {}
|
| 867 |
+
}
|
| 868 |
+
},
|
| 869 |
+
"total_flos": 5.467141180489728e+18,
|
| 870 |
+
"train_batch_size": 4,
|
| 871 |
+
"trial_name": null,
|
| 872 |
+
"trial_params": null
|
| 873 |
+
}
|
checkpoint-1200/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fbdba9805bd0d1a205737e79e7c8cc90395bd2d30f5c02b0fe337cbf2b804f7
|
| 3 |
+
size 6520
|
checkpoint-1200/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 252 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 253 |
+
|
| 254 |
+
# Reconstruction protocol:
|
| 255 |
+
#
|
| 256 |
+
# XXX: document this
|
| 257 |
+
|
| 258 |
+
if debug:
|
| 259 |
+
for i in range(world_size):
|
| 260 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 262 |
+
|
| 263 |
+
# XXX: memory usage doubles here (zero2)
|
| 264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 265 |
+
merged_single_partition_of_fp32_groups = []
|
| 266 |
+
for i in range(num_param_groups):
|
| 267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 270 |
+
avail_numel = sum(
|
| 271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 272 |
+
|
| 273 |
+
if debug:
|
| 274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 276 |
+
# not asserting if there is a mismatch due to possible padding
|
| 277 |
+
print(f"Have {avail_numel} numels to process.")
|
| 278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 279 |
+
|
| 280 |
+
# params
|
| 281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 282 |
+
# out-of-core computing solution
|
| 283 |
+
total_numel = 0
|
| 284 |
+
total_params = 0
|
| 285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 286 |
+
offset = 0
|
| 287 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 288 |
+
for name, shape in shapes.items():
|
| 289 |
+
|
| 290 |
+
unpartitioned_numel = shape.numel()
|
| 291 |
+
total_numel += unpartitioned_numel
|
| 292 |
+
total_params += 1
|
| 293 |
+
|
| 294 |
+
if debug:
|
| 295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 297 |
+
offset += unpartitioned_numel
|
| 298 |
+
|
| 299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 303 |
+
align_to = 2 * world_size
|
| 304 |
+
|
| 305 |
+
def zero2_align(x):
|
| 306 |
+
return align_to * math.ceil(x / align_to)
|
| 307 |
+
|
| 308 |
+
if debug:
|
| 309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 310 |
+
|
| 311 |
+
offset = zero2_align(offset)
|
| 312 |
+
avail_numel = zero2_align(avail_numel)
|
| 313 |
+
|
| 314 |
+
if debug:
|
| 315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 316 |
+
|
| 317 |
+
# Sanity check
|
| 318 |
+
if offset != avail_numel:
|
| 319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 320 |
+
|
| 321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 325 |
+
state_dict = OrderedDict()
|
| 326 |
+
|
| 327 |
+
# buffers
|
| 328 |
+
buffers = zero_model_states[0].buffers
|
| 329 |
+
state_dict.update(buffers)
|
| 330 |
+
if debug:
|
| 331 |
+
print(f"added {len(buffers)} buffers")
|
| 332 |
+
|
| 333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 334 |
+
|
| 335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 336 |
+
|
| 337 |
+
# recover shared parameters
|
| 338 |
+
for pair in zero_model_states[0].shared_params:
|
| 339 |
+
if pair[1] in state_dict:
|
| 340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 341 |
+
|
| 342 |
+
return state_dict
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 346 |
+
remainder = unpartitioned_numel % world_size
|
| 347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 349 |
+
return partitioned_numel, padding_numel
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 354 |
+
return
|
| 355 |
+
|
| 356 |
+
if debug:
|
| 357 |
+
for i in range(world_size):
|
| 358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 360 |
+
|
| 361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 362 |
+
wanted_params = len(frozen_param_shapes)
|
| 363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 367 |
+
|
| 368 |
+
total_params = 0
|
| 369 |
+
total_numel = 0
|
| 370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 371 |
+
total_params += 1
|
| 372 |
+
unpartitioned_numel = shape.numel()
|
| 373 |
+
total_numel += unpartitioned_numel
|
| 374 |
+
|
| 375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 377 |
+
|
| 378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 379 |
+
|
| 380 |
+
if debug:
|
| 381 |
+
print(
|
| 382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 389 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 393 |
+
|
| 394 |
+
# merge list of dicts, preserving order
|
| 395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 396 |
+
|
| 397 |
+
if debug:
|
| 398 |
+
for i in range(world_size):
|
| 399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 400 |
+
|
| 401 |
+
wanted_params = len(param_shapes)
|
| 402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 403 |
+
# not asserting if there is a mismatch due to possible padding
|
| 404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 407 |
+
|
| 408 |
+
# params
|
| 409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 410 |
+
# out-of-core computing solution
|
| 411 |
+
offset = 0
|
| 412 |
+
total_numel = 0
|
| 413 |
+
total_params = 0
|
| 414 |
+
for name, shape in param_shapes.items():
|
| 415 |
+
|
| 416 |
+
unpartitioned_numel = shape.numel()
|
| 417 |
+
total_numel += unpartitioned_numel
|
| 418 |
+
total_params += 1
|
| 419 |
+
|
| 420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 421 |
+
|
| 422 |
+
if debug:
|
| 423 |
+
print(
|
| 424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# XXX: memory usage doubles here
|
| 428 |
+
state_dict[name] = torch.cat(
|
| 429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 431 |
+
offset += partitioned_numel
|
| 432 |
+
|
| 433 |
+
offset *= world_size
|
| 434 |
+
|
| 435 |
+
# Sanity check
|
| 436 |
+
if offset != avail_numel:
|
| 437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 438 |
+
|
| 439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 443 |
+
state_dict = OrderedDict()
|
| 444 |
+
|
| 445 |
+
# buffers
|
| 446 |
+
buffers = zero_model_states[0].buffers
|
| 447 |
+
state_dict.update(buffers)
|
| 448 |
+
if debug:
|
| 449 |
+
print(f"added {len(buffers)} buffers")
|
| 450 |
+
|
| 451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 452 |
+
|
| 453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 454 |
+
|
| 455 |
+
# recover shared parameters
|
| 456 |
+
for pair in zero_model_states[0].shared_params:
|
| 457 |
+
if pair[1] in state_dict:
|
| 458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 459 |
+
|
| 460 |
+
return state_dict
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 464 |
+
"""
|
| 465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 467 |
+
via a model hub.
|
| 468 |
+
|
| 469 |
+
Args:
|
| 470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 472 |
+
|
| 473 |
+
Returns:
|
| 474 |
+
- pytorch ``state_dict``
|
| 475 |
+
|
| 476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 478 |
+
the checkpoint.
|
| 479 |
+
|
| 480 |
+
A typical usage might be ::
|
| 481 |
+
|
| 482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 483 |
+
# do the training and checkpoint saving
|
| 484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 485 |
+
model = model.cpu() # move to cpu
|
| 486 |
+
model.load_state_dict(state_dict)
|
| 487 |
+
# submit to model hub or save the model to share with others
|
| 488 |
+
|
| 489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 492 |
+
|
| 493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 494 |
+
|
| 495 |
+
"""
|
| 496 |
+
if tag is None:
|
| 497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 498 |
+
if os.path.isfile(latest_path):
|
| 499 |
+
with open(latest_path, 'r') as fd:
|
| 500 |
+
tag = fd.read().strip()
|
| 501 |
+
else:
|
| 502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 503 |
+
|
| 504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 505 |
+
|
| 506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 508 |
+
|
| 509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 513 |
+
"""
|
| 514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 516 |
+
|
| 517 |
+
Args:
|
| 518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 521 |
+
"""
|
| 522 |
+
|
| 523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 525 |
+
torch.save(state_dict, output_file)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 529 |
+
"""
|
| 530 |
+
1. Put the provided model to cpu
|
| 531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 532 |
+
3. Load it into the provided model
|
| 533 |
+
|
| 534 |
+
Args:
|
| 535 |
+
- ``model``: the model object to update
|
| 536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 538 |
+
|
| 539 |
+
Returns:
|
| 540 |
+
- ``model`: modified model
|
| 541 |
+
|
| 542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 544 |
+
conveniently placed for you in the checkpoint folder.
|
| 545 |
+
|
| 546 |
+
A typical usage might be ::
|
| 547 |
+
|
| 548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 550 |
+
# submit to model hub or save the model to share with others
|
| 551 |
+
|
| 552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 555 |
+
|
| 556 |
+
"""
|
| 557 |
+
logger.info(f"Extracting fp32 weights")
|
| 558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 559 |
+
|
| 560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 561 |
+
model = model.cpu()
|
| 562 |
+
model.load_state_dict(state_dict, strict=False)
|
| 563 |
+
|
| 564 |
+
return model
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
if __name__ == "__main__":
|
| 568 |
+
|
| 569 |
+
parser = argparse.ArgumentParser()
|
| 570 |
+
parser.add_argument("checkpoint_dir",
|
| 571 |
+
type=str,
|
| 572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 573 |
+
parser.add_argument(
|
| 574 |
+
"output_file",
|
| 575 |
+
type=str,
|
| 576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 577 |
+
parser.add_argument("-t",
|
| 578 |
+
"--tag",
|
| 579 |
+
type=str,
|
| 580 |
+
default=None,
|
| 581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 583 |
+
args = parser.parse_args()
|
| 584 |
+
|
| 585 |
+
debug = args.debug
|
| 586 |
+
|
| 587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-1600/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: Qwen/Qwen-VL-Chat
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
checkpoint-1600/adapter_config.json
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 16,
|
| 14 |
+
"lora_dropout": 0.05,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 64,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
| 24 |
+
"transformer.h.11.attn.c_attn",
|
| 25 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
| 26 |
+
"transformer.h.26.mlp.c_proj",
|
| 27 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
| 28 |
+
"transformer.h.20.mlp.c_proj",
|
| 29 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
| 30 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
| 31 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
| 32 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
| 33 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
| 34 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
| 35 |
+
"transformer.h.1.mlp.c_proj",
|
| 36 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
| 37 |
+
"transformer.h.28.attn.c_attn",
|
| 38 |
+
"transformer.h.19.attn.c_proj",
|
| 39 |
+
"transformer.h.29.mlp.c_proj",
|
| 40 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
| 41 |
+
"transformer.h.17.attn.c_attn",
|
| 42 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
| 43 |
+
"transformer.h.16.mlp.c_proj",
|
| 44 |
+
"transformer.h.19.mlp.w2",
|
| 45 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
| 46 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
| 47 |
+
"transformer.h.0.mlp.w2",
|
| 48 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
| 49 |
+
"transformer.h.3.mlp.c_proj",
|
| 50 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
| 51 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
| 52 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
| 53 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
| 54 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
| 55 |
+
"transformer.h.0.mlp.w1",
|
| 56 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
| 57 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
| 58 |
+
"transformer.visual.conv1",
|
| 59 |
+
"transformer.h.22.mlp.w2",
|
| 60 |
+
"transformer.h.21.mlp.w2",
|
| 61 |
+
"transformer.h.13.attn.c_attn",
|
| 62 |
+
"transformer.h.10.mlp.w1",
|
| 63 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
| 64 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
| 65 |
+
"transformer.h.16.mlp.w2",
|
| 66 |
+
"transformer.h.8.attn.c_proj",
|
| 67 |
+
"transformer.h.30.mlp.w1",
|
| 68 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
| 69 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
| 70 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
| 71 |
+
"transformer.h.23.attn.c_proj",
|
| 72 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
| 73 |
+
"transformer.h.25.mlp.c_proj",
|
| 74 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
| 75 |
+
"transformer.h.15.attn.c_attn",
|
| 76 |
+
"transformer.h.2.mlp.w1",
|
| 77 |
+
"transformer.h.4.mlp.w1",
|
| 78 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
| 79 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
| 80 |
+
"transformer.h.30.attn.c_attn",
|
| 81 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
| 82 |
+
"transformer.h.8.mlp.c_proj",
|
| 83 |
+
"transformer.h.8.mlp.w2",
|
| 84 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
| 85 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
| 86 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
| 87 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
| 88 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
| 89 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
| 90 |
+
"transformer.h.8.mlp.w1",
|
| 91 |
+
"transformer.h.31.mlp.w1",
|
| 92 |
+
"transformer.h.4.attn.c_attn",
|
| 93 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
| 94 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
| 95 |
+
"transformer.h.13.attn.c_proj",
|
| 96 |
+
"transformer.h.24.attn.c_attn",
|
| 97 |
+
"transformer.h.27.attn.c_attn",
|
| 98 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
| 99 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
| 100 |
+
"transformer.h.31.mlp.c_proj",
|
| 101 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
| 102 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
| 103 |
+
"transformer.h.10.mlp.w2",
|
| 104 |
+
"transformer.h.21.attn.c_attn",
|
| 105 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
| 106 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
| 107 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
| 108 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
| 109 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
| 110 |
+
"transformer.h.18.mlp.w2",
|
| 111 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
| 112 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
| 113 |
+
"transformer.h.12.mlp.w1",
|
| 114 |
+
"transformer.h.7.mlp.w1",
|
| 115 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
| 116 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
| 117 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
| 118 |
+
"transformer.h.23.attn.c_attn",
|
| 119 |
+
"transformer.h.27.mlp.w2",
|
| 120 |
+
"transformer.h.17.mlp.w2",
|
| 121 |
+
"transformer.h.20.mlp.w2",
|
| 122 |
+
"transformer.h.22.mlp.c_proj",
|
| 123 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
| 124 |
+
"transformer.h.27.mlp.c_proj",
|
| 125 |
+
"transformer.h.0.attn.c_proj",
|
| 126 |
+
"transformer.h.5.attn.c_attn",
|
| 127 |
+
"transformer.h.24.mlp.w2",
|
| 128 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
| 129 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
| 130 |
+
"transformer.h.5.mlp.c_proj",
|
| 131 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
| 132 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
| 133 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
| 134 |
+
"transformer.h.26.attn.c_proj",
|
| 135 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
| 136 |
+
"transformer.h.29.attn.c_attn",
|
| 137 |
+
"transformer.h.15.attn.c_proj",
|
| 138 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
| 139 |
+
"transformer.h.4.mlp.c_proj",
|
| 140 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
| 141 |
+
"transformer.h.0.mlp.c_proj",
|
| 142 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
| 143 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
| 144 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
| 145 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
| 146 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
| 147 |
+
"transformer.h.15.mlp.w2",
|
| 148 |
+
"transformer.h.3.attn.c_attn",
|
| 149 |
+
"transformer.h.28.mlp.w1",
|
| 150 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
| 151 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
| 152 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
| 153 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
| 154 |
+
"transformer.h.31.attn.c_proj",
|
| 155 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
| 156 |
+
"transformer.h.17.mlp.w1",
|
| 157 |
+
"transformer.h.18.mlp.c_proj",
|
| 158 |
+
"transformer.h.19.mlp.c_proj",
|
| 159 |
+
"transformer.h.9.mlp.w2",
|
| 160 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
| 161 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
| 162 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
| 163 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
| 164 |
+
"transformer.h.30.mlp.w2",
|
| 165 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
| 166 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
| 167 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
| 168 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
| 169 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
| 170 |
+
"transformer.h.28.mlp.c_proj",
|
| 171 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
| 172 |
+
"transformer.h.22.attn.c_attn",
|
| 173 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
| 174 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
| 175 |
+
"transformer.h.0.attn.c_attn",
|
| 176 |
+
"transformer.h.11.mlp.w2",
|
| 177 |
+
"transformer.h.19.mlp.w1",
|
| 178 |
+
"transformer.h.26.mlp.w2",
|
| 179 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
| 180 |
+
"transformer.h.29.mlp.w2",
|
| 181 |
+
"transformer.h.27.attn.c_proj",
|
| 182 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
| 183 |
+
"transformer.h.17.mlp.c_proj",
|
| 184 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
| 185 |
+
"transformer.h.6.attn.c_attn",
|
| 186 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
| 187 |
+
"transformer.h.21.mlp.w1",
|
| 188 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
| 189 |
+
"transformer.h.20.mlp.w1",
|
| 190 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
| 191 |
+
"transformer.h.23.mlp.c_proj",
|
| 192 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
| 193 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
| 194 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
| 195 |
+
"transformer.h.9.mlp.c_proj",
|
| 196 |
+
"transformer.h.7.attn.c_attn",
|
| 197 |
+
"transformer.h.29.mlp.w1",
|
| 198 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
| 199 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
| 200 |
+
"transformer.h.11.mlp.w1",
|
| 201 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
| 202 |
+
"transformer.h.5.mlp.w2",
|
| 203 |
+
"transformer.h.11.attn.c_proj",
|
| 204 |
+
"transformer.h.18.attn.c_attn",
|
| 205 |
+
"transformer.h.6.mlp.w1",
|
| 206 |
+
"transformer.h.27.mlp.w1",
|
| 207 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
| 208 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
| 209 |
+
"transformer.h.25.attn.c_attn",
|
| 210 |
+
"transformer.h.1.mlp.w2",
|
| 211 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
| 212 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
| 213 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
| 214 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
| 215 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
| 216 |
+
"transformer.h.14.mlp.w1",
|
| 217 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
| 218 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
| 219 |
+
"transformer.h.16.attn.c_attn",
|
| 220 |
+
"transformer.h.3.mlp.w1",
|
| 221 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
| 222 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
| 223 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
| 224 |
+
"transformer.h.15.mlp.w1",
|
| 225 |
+
"transformer.h.9.attn.c_proj",
|
| 226 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
| 227 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
| 228 |
+
"transformer.h.12.attn.c_attn",
|
| 229 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
| 230 |
+
"transformer.h.28.attn.c_proj",
|
| 231 |
+
"transformer.h.13.mlp.w2",
|
| 232 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
| 233 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
| 234 |
+
"transformer.h.22.mlp.w1",
|
| 235 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
| 236 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
| 237 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
| 238 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
| 239 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
| 240 |
+
"transformer.h.24.mlp.w1",
|
| 241 |
+
"transformer.h.12.mlp.w2",
|
| 242 |
+
"transformer.h.30.mlp.c_proj",
|
| 243 |
+
"transformer.h.3.attn.c_proj",
|
| 244 |
+
"transformer.h.11.mlp.c_proj",
|
| 245 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
| 246 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
| 247 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
| 248 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
| 249 |
+
"transformer.h.18.mlp.w1",
|
| 250 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
| 251 |
+
"transformer.h.23.mlp.w1",
|
| 252 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
| 253 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
| 254 |
+
"transformer.h.1.mlp.w1",
|
| 255 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
| 256 |
+
"transformer.h.29.attn.c_proj",
|
| 257 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
| 258 |
+
"transformer.h.21.attn.c_proj",
|
| 259 |
+
"transformer.h.7.attn.c_proj",
|
| 260 |
+
"transformer.h.12.mlp.c_proj",
|
| 261 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
| 262 |
+
"transformer.h.17.attn.c_proj",
|
| 263 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
| 264 |
+
"transformer.h.20.attn.c_attn",
|
| 265 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
| 266 |
+
"transformer.h.14.attn.c_proj",
|
| 267 |
+
"transformer.h.13.mlp.c_proj",
|
| 268 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
| 269 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
| 270 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
| 271 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
| 272 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
| 273 |
+
"transformer.h.23.mlp.w2",
|
| 274 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
| 275 |
+
"transformer.h.8.attn.c_attn",
|
| 276 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
| 277 |
+
"transformer.h.14.mlp.w2",
|
| 278 |
+
"transformer.h.7.mlp.w2",
|
| 279 |
+
"transformer.h.26.mlp.w1",
|
| 280 |
+
"transformer.h.6.mlp.w2",
|
| 281 |
+
"transformer.h.31.attn.c_attn",
|
| 282 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
| 283 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
| 284 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
| 285 |
+
"transformer.h.28.mlp.w2",
|
| 286 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
| 287 |
+
"transformer.h.2.mlp.w2",
|
| 288 |
+
"transformer.h.2.attn.c_attn",
|
| 289 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
| 290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
| 291 |
+
"transformer.h.18.attn.c_proj",
|
| 292 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
| 293 |
+
"transformer.h.12.attn.c_proj",
|
| 294 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
| 295 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
| 296 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
| 297 |
+
"transformer.h.24.attn.c_proj",
|
| 298 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
| 299 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
| 300 |
+
"transformer.h.26.attn.c_attn",
|
| 301 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
| 302 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
| 303 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
| 304 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
| 305 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
| 306 |
+
"transformer.h.21.mlp.c_proj",
|
| 307 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
| 308 |
+
"transformer.h.14.mlp.c_proj",
|
| 309 |
+
"transformer.h.24.mlp.c_proj",
|
| 310 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
| 311 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
| 312 |
+
"transformer.h.7.mlp.c_proj",
|
| 313 |
+
"transformer.h.14.attn.c_attn",
|
| 314 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
| 315 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
| 316 |
+
"transformer.h.2.attn.c_proj",
|
| 317 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
| 318 |
+
"transformer.h.9.attn.c_attn",
|
| 319 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
| 320 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
| 321 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
| 322 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
| 323 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
| 324 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
| 325 |
+
"transformer.h.25.mlp.w1",
|
| 326 |
+
"transformer.h.10.attn.c_proj",
|
| 327 |
+
"transformer.h.16.mlp.w1",
|
| 328 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
| 329 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
| 330 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
| 331 |
+
"transformer.h.13.mlp.w1",
|
| 332 |
+
"transformer.h.15.mlp.c_proj",
|
| 333 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
| 334 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
| 335 |
+
"transformer.h.10.mlp.c_proj",
|
| 336 |
+
"transformer.h.16.attn.c_proj",
|
| 337 |
+
"transformer.h.6.attn.c_proj",
|
| 338 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
| 339 |
+
"transformer.h.5.attn.c_proj",
|
| 340 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
| 341 |
+
"transformer.h.1.attn.c_proj",
|
| 342 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
| 343 |
+
"transformer.h.5.mlp.w1",
|
| 344 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
| 345 |
+
"transformer.h.6.mlp.c_proj",
|
| 346 |
+
"transformer.h.31.mlp.w2",
|
| 347 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
| 348 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
| 349 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
| 350 |
+
"transformer.h.10.attn.c_attn",
|
| 351 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
| 352 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
| 353 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
| 354 |
+
"transformer.h.25.attn.c_proj",
|
| 355 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
| 356 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
| 357 |
+
"transformer.h.4.mlp.w2",
|
| 358 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
| 359 |
+
"transformer.h.9.mlp.w1",
|
| 360 |
+
"transformer.h.2.mlp.c_proj",
|
| 361 |
+
"transformer.h.22.attn.c_proj",
|
| 362 |
+
"transformer.h.25.mlp.w2",
|
| 363 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
| 364 |
+
"transformer.h.30.attn.c_proj",
|
| 365 |
+
"transformer.h.20.attn.c_proj",
|
| 366 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
| 367 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
| 368 |
+
"transformer.h.3.mlp.w2",
|
| 369 |
+
"transformer.h.19.attn.c_attn",
|
| 370 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
| 371 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
| 372 |
+
"transformer.h.1.attn.c_attn",
|
| 373 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
| 374 |
+
"transformer.h.4.attn.c_proj",
|
| 375 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc"
|
| 376 |
+
],
|
| 377 |
+
"task_type": "CAUSAL_LM",
|
| 378 |
+
"use_dora": false,
|
| 379 |
+
"use_rslora": false
|
| 380 |
+
}
|
checkpoint-1600/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:678d3f6c4f77423faad213db0711aa2737fb7238da61764309f25257c7a103e9
|
| 3 |
+
size 469105640
|
checkpoint-1600/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1600
|
checkpoint-1600/qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1600/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0943be1d73f8cd864a8d86cf602e01a0ee9483c4bbd1287ca1aa6a70a07a7d78
|
| 3 |
+
size 14960
|
checkpoint-1600/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1814e986cf45968069746e25fb44856688645b26635b32a478bed3330978b28
|
| 3 |
+
size 14960
|
checkpoint-1600/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bfdaf471dc63d05f3a4e9aff471d87f770511c8529541d9f1d14a82ae9e16fd9
|
| 3 |
+
size 14960
|
checkpoint-1600/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8557ae681bc439c82fd4086d0ae897ebef2a086d2acbb923505fe7e63067cbd2
|
| 3 |
+
size 14960
|
checkpoint-1600/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0d0794962fd5d327d9bc0d61b8681692b6df3d1030d5844836ce2192acb24b7
|
| 3 |
+
size 1064
|
checkpoint-1600/special_tokens_map.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"pad_token": "<|endoftext|>"
|
| 3 |
+
}
|
checkpoint-1600/tokenizer_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {},
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoTokenizer": [
|
| 5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
| 6 |
+
null
|
| 7 |
+
]
|
| 8 |
+
},
|
| 9 |
+
"clean_up_tokenization_spaces": true,
|
| 10 |
+
"model_max_length": 1280,
|
| 11 |
+
"pad_token": "<|endoftext|>",
|
| 12 |
+
"padding_side": "right",
|
| 13 |
+
"tokenizer_class": "QWenTokenizer"
|
| 14 |
+
}
|
checkpoint-1600/trainer_state.json
ADDED
|
@@ -0,0 +1,1153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.2692242974928487,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 1600,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0016826518593303045,
|
| 13 |
+
"grad_norm": 3.75418950341011,
|
| 14 |
+
"learning_rate": 4.9999999999999996e-06,
|
| 15 |
+
"loss": 0.9983,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.003365303718660609,
|
| 20 |
+
"grad_norm": 4.027030925274863,
|
| 21 |
+
"learning_rate": 9.999999999999999e-06,
|
| 22 |
+
"loss": 0.9697,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.005047955577990914,
|
| 27 |
+
"grad_norm": 4.048987349136423,
|
| 28 |
+
"learning_rate": 1.5e-05,
|
| 29 |
+
"loss": 0.9412,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.006730607437321218,
|
| 34 |
+
"grad_norm": 5.720158971431411,
|
| 35 |
+
"learning_rate": 1.9999999999999998e-05,
|
| 36 |
+
"loss": 0.8783,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.008413259296651522,
|
| 41 |
+
"grad_norm": 4.718965032869529,
|
| 42 |
+
"learning_rate": 2.5e-05,
|
| 43 |
+
"loss": 0.8454,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.010095911155981827,
|
| 48 |
+
"grad_norm": 3.5785181087788835,
|
| 49 |
+
"learning_rate": 3e-05,
|
| 50 |
+
"loss": 0.809,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.011778563015312132,
|
| 55 |
+
"grad_norm": 4.11981684712826,
|
| 56 |
+
"learning_rate": 2.9999786123888308e-05,
|
| 57 |
+
"loss": 0.7556,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.013461214874642436,
|
| 62 |
+
"grad_norm": 6.082559649594005,
|
| 63 |
+
"learning_rate": 2.9999144501652298e-05,
|
| 64 |
+
"loss": 0.7613,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.01514386673397274,
|
| 69 |
+
"grad_norm": 1.957553999291205,
|
| 70 |
+
"learning_rate": 2.9998075151588992e-05,
|
| 71 |
+
"loss": 0.7784,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.016826518593303044,
|
| 76 |
+
"grad_norm": 1.6706087540201593,
|
| 77 |
+
"learning_rate": 2.999657810419285e-05,
|
| 78 |
+
"loss": 0.7658,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.01850917045263335,
|
| 83 |
+
"grad_norm": 2.909734954037323,
|
| 84 |
+
"learning_rate": 2.999465340215489e-05,
|
| 85 |
+
"loss": 0.7331,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.020191822311963654,
|
| 90 |
+
"grad_norm": 1.977272298268717,
|
| 91 |
+
"learning_rate": 2.999230110036149e-05,
|
| 92 |
+
"loss": 0.7507,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.02187447417129396,
|
| 97 |
+
"grad_norm": 1.8089524113272115,
|
| 98 |
+
"learning_rate": 2.99895212658928e-05,
|
| 99 |
+
"loss": 0.7309,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.023557126030624265,
|
| 104 |
+
"grad_norm": 2.134962179309057,
|
| 105 |
+
"learning_rate": 2.9986313978020846e-05,
|
| 106 |
+
"loss": 0.721,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.02523977788995457,
|
| 111 |
+
"grad_norm": 11.10353091330302,
|
| 112 |
+
"learning_rate": 2.9982679328207262e-05,
|
| 113 |
+
"loss": 0.7338,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.02692242974928487,
|
| 118 |
+
"grad_norm": 1.4444344817739057,
|
| 119 |
+
"learning_rate": 2.9978617420100692e-05,
|
| 120 |
+
"loss": 0.7227,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.028605081608615177,
|
| 125 |
+
"grad_norm": 1.453288161439029,
|
| 126 |
+
"learning_rate": 2.9974128369533805e-05,
|
| 127 |
+
"loss": 0.7107,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.03028773346794548,
|
| 132 |
+
"grad_norm": 3.475164856876678,
|
| 133 |
+
"learning_rate": 2.9969212304520034e-05,
|
| 134 |
+
"loss": 0.7303,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.03197038532727579,
|
| 139 |
+
"grad_norm": 1.1636824531496957,
|
| 140 |
+
"learning_rate": 2.9963869365249895e-05,
|
| 141 |
+
"loss": 0.6688,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.03365303718660609,
|
| 146 |
+
"grad_norm": 1.8518695174363622,
|
| 147 |
+
"learning_rate": 2.995809970408699e-05,
|
| 148 |
+
"loss": 0.7003,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.0353356890459364,
|
| 153 |
+
"grad_norm": 4.09791760479377,
|
| 154 |
+
"learning_rate": 2.9951903485563685e-05,
|
| 155 |
+
"loss": 0.7442,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.0370183409052667,
|
| 160 |
+
"grad_norm": 2.4987929291159956,
|
| 161 |
+
"learning_rate": 2.99452808863764e-05,
|
| 162 |
+
"loss": 0.7517,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.03870099276459701,
|
| 167 |
+
"grad_norm": 3.4584802037194087,
|
| 168 |
+
"learning_rate": 2.993823209538056e-05,
|
| 169 |
+
"loss": 0.7537,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.04038364462392731,
|
| 174 |
+
"grad_norm": 2.511130636368107,
|
| 175 |
+
"learning_rate": 2.9930757313585238e-05,
|
| 176 |
+
"loss": 0.7599,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.04206629648325761,
|
| 181 |
+
"grad_norm": 1.7030446444812277,
|
| 182 |
+
"learning_rate": 2.9922856754147406e-05,
|
| 183 |
+
"loss": 0.7126,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.04374894834258792,
|
| 188 |
+
"grad_norm": 4.790377413030976,
|
| 189 |
+
"learning_rate": 2.9914530642365852e-05,
|
| 190 |
+
"loss": 0.72,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.04543160020191822,
|
| 195 |
+
"grad_norm": 2.0321244924961976,
|
| 196 |
+
"learning_rate": 2.990577921567476e-05,
|
| 197 |
+
"loss": 0.6733,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.04711425206124853,
|
| 202 |
+
"grad_norm": 2.310370624749643,
|
| 203 |
+
"learning_rate": 2.989660272363696e-05,
|
| 204 |
+
"loss": 0.7212,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.04879690392057883,
|
| 209 |
+
"grad_norm": 3.451763592410144,
|
| 210 |
+
"learning_rate": 2.988700142793676e-05,
|
| 211 |
+
"loss": 0.7237,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.05047955577990914,
|
| 216 |
+
"grad_norm": 5.317302731978485,
|
| 217 |
+
"learning_rate": 2.9876975602372536e-05,
|
| 218 |
+
"loss": 0.7558,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.05216220763923944,
|
| 223 |
+
"grad_norm": 2.3026448136142914,
|
| 224 |
+
"learning_rate": 2.9866525532848906e-05,
|
| 225 |
+
"loss": 0.6985,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.05384485949856974,
|
| 230 |
+
"grad_norm": 1.8320545447196381,
|
| 231 |
+
"learning_rate": 2.9855651517368567e-05,
|
| 232 |
+
"loss": 0.7227,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.05552751135790005,
|
| 237 |
+
"grad_norm": 1.9908218789466392,
|
| 238 |
+
"learning_rate": 2.9844353866023802e-05,
|
| 239 |
+
"loss": 0.7075,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.05721016321723035,
|
| 244 |
+
"grad_norm": 5.182840115712529,
|
| 245 |
+
"learning_rate": 2.9832632900987642e-05,
|
| 246 |
+
"loss": 0.7207,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.05889281507656066,
|
| 251 |
+
"grad_norm": 1.5483797249278837,
|
| 252 |
+
"learning_rate": 2.982048895650468e-05,
|
| 253 |
+
"loss": 0.7233,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.06057546693589096,
|
| 258 |
+
"grad_norm": 2.3382590504722693,
|
| 259 |
+
"learning_rate": 2.9807922378881537e-05,
|
| 260 |
+
"loss": 0.7002,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.06225811879522127,
|
| 265 |
+
"grad_norm": 3.1859655239636937,
|
| 266 |
+
"learning_rate": 2.979493352647697e-05,
|
| 267 |
+
"loss": 0.7201,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.06394077065455157,
|
| 272 |
+
"grad_norm": 0.9149159742557087,
|
| 273 |
+
"learning_rate": 2.9781522769691686e-05,
|
| 274 |
+
"loss": 0.7136,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.06562342251388188,
|
| 279 |
+
"grad_norm": 10.861566072795899,
|
| 280 |
+
"learning_rate": 2.9767690490957758e-05,
|
| 281 |
+
"loss": 0.7068,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.06730607437321218,
|
| 286 |
+
"grad_norm": 2.8618866775651006,
|
| 287 |
+
"learning_rate": 2.9753437084727713e-05,
|
| 288 |
+
"loss": 0.7239,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.06898872623254249,
|
| 293 |
+
"grad_norm": 2.8726068570785097,
|
| 294 |
+
"learning_rate": 2.9738762957463292e-05,
|
| 295 |
+
"loss": 0.7245,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.0706713780918728,
|
| 300 |
+
"grad_norm": 2.4481298042739112,
|
| 301 |
+
"learning_rate": 2.9723668527623877e-05,
|
| 302 |
+
"loss": 0.7752,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.0723540299512031,
|
| 307 |
+
"grad_norm": 1.8599931346602536,
|
| 308 |
+
"learning_rate": 2.9708154225654526e-05,
|
| 309 |
+
"loss": 0.7323,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.0740366818105334,
|
| 314 |
+
"grad_norm": 1.2855737813743626,
|
| 315 |
+
"learning_rate": 2.9692220493973712e-05,
|
| 316 |
+
"loss": 0.7037,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.0757193336698637,
|
| 321 |
+
"grad_norm": 4.629091463528233,
|
| 322 |
+
"learning_rate": 2.9675867786960718e-05,
|
| 323 |
+
"loss": 0.6867,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.07740198552919401,
|
| 328 |
+
"grad_norm": 6.294427059845777,
|
| 329 |
+
"learning_rate": 2.9659096570942654e-05,
|
| 330 |
+
"loss": 0.7272,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.07908463738852431,
|
| 335 |
+
"grad_norm": 2.4758348810051345,
|
| 336 |
+
"learning_rate": 2.9641907324181194e-05,
|
| 337 |
+
"loss": 0.6779,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.08076728924785462,
|
| 342 |
+
"grad_norm": 1.3455245255212915,
|
| 343 |
+
"learning_rate": 2.96243005368589e-05,
|
| 344 |
+
"loss": 0.7051,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.08244994110718493,
|
| 349 |
+
"grad_norm": 4.796150475871981,
|
| 350 |
+
"learning_rate": 2.960627671106527e-05,
|
| 351 |
+
"loss": 0.7547,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.08413259296651522,
|
| 356 |
+
"grad_norm": 2.684441445075641,
|
| 357 |
+
"learning_rate": 2.9587836360782405e-05,
|
| 358 |
+
"loss": 0.709,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.08581524482584553,
|
| 363 |
+
"grad_norm": 1.3869329152815553,
|
| 364 |
+
"learning_rate": 2.9568980011870357e-05,
|
| 365 |
+
"loss": 0.7073,
|
| 366 |
+
"step": 510
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.08749789668517584,
|
| 370 |
+
"grad_norm": 2.5576974478207197,
|
| 371 |
+
"learning_rate": 2.954970820205214e-05,
|
| 372 |
+
"loss": 0.6918,
|
| 373 |
+
"step": 520
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.08918054854450615,
|
| 377 |
+
"grad_norm": 1.1525450967004647,
|
| 378 |
+
"learning_rate": 2.9530021480898393e-05,
|
| 379 |
+
"loss": 0.6698,
|
| 380 |
+
"step": 530
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.09086320040383644,
|
| 384 |
+
"grad_norm": 2.847083851829901,
|
| 385 |
+
"learning_rate": 2.9509920409811696e-05,
|
| 386 |
+
"loss": 0.671,
|
| 387 |
+
"step": 540
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.09254585226316675,
|
| 391 |
+
"grad_norm": 2.561042091789346,
|
| 392 |
+
"learning_rate": 2.9489405562010565e-05,
|
| 393 |
+
"loss": 0.75,
|
| 394 |
+
"step": 550
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.09422850412249706,
|
| 398 |
+
"grad_norm": 4.458337350053255,
|
| 399 |
+
"learning_rate": 2.9468477522513132e-05,
|
| 400 |
+
"loss": 0.7277,
|
| 401 |
+
"step": 560
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.09591115598182735,
|
| 405 |
+
"grad_norm": 3.114622509219852,
|
| 406 |
+
"learning_rate": 2.9447136888120408e-05,
|
| 407 |
+
"loss": 0.6967,
|
| 408 |
+
"step": 570
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.09759380784115766,
|
| 412 |
+
"grad_norm": 1.6295210229360877,
|
| 413 |
+
"learning_rate": 2.9425384267399327e-05,
|
| 414 |
+
"loss": 0.6867,
|
| 415 |
+
"step": 580
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.09927645970048797,
|
| 419 |
+
"grad_norm": 1.7579117810504754,
|
| 420 |
+
"learning_rate": 2.940322028066534e-05,
|
| 421 |
+
"loss": 0.7236,
|
| 422 |
+
"step": 590
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.10095911155981828,
|
| 426 |
+
"grad_norm": 1.788183804411441,
|
| 427 |
+
"learning_rate": 2.938064555996476e-05,
|
| 428 |
+
"loss": 0.6864,
|
| 429 |
+
"step": 600
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.10264176341914857,
|
| 433 |
+
"grad_norm": 2.8340511721646373,
|
| 434 |
+
"learning_rate": 2.9357660749056713e-05,
|
| 435 |
+
"loss": 0.6847,
|
| 436 |
+
"step": 610
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.10432441527847888,
|
| 440 |
+
"grad_norm": 2.5230840193297985,
|
| 441 |
+
"learning_rate": 2.9334266503394803e-05,
|
| 442 |
+
"loss": 0.6889,
|
| 443 |
+
"step": 620
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.10600706713780919,
|
| 447 |
+
"grad_norm": 7.346086885083334,
|
| 448 |
+
"learning_rate": 2.9310463490108397e-05,
|
| 449 |
+
"loss": 0.7419,
|
| 450 |
+
"step": 630
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.10768971899713949,
|
| 454 |
+
"grad_norm": 2.356832890545339,
|
| 455 |
+
"learning_rate": 2.928625238798362e-05,
|
| 456 |
+
"loss": 0.7369,
|
| 457 |
+
"step": 640
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.1093723708564698,
|
| 461 |
+
"grad_norm": 2.4978380391841095,
|
| 462 |
+
"learning_rate": 2.9261633887443993e-05,
|
| 463 |
+
"loss": 0.6948,
|
| 464 |
+
"step": 650
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.1110550227158001,
|
| 468 |
+
"grad_norm": 3.535487375505793,
|
| 469 |
+
"learning_rate": 2.9236608690530738e-05,
|
| 470 |
+
"loss": 0.7081,
|
| 471 |
+
"step": 660
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.11273767457513041,
|
| 475 |
+
"grad_norm": 2.522638625540884,
|
| 476 |
+
"learning_rate": 2.921117751088276e-05,
|
| 477 |
+
"loss": 0.7191,
|
| 478 |
+
"step": 670
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.1144203264344607,
|
| 482 |
+
"grad_norm": 3.055823541699581,
|
| 483 |
+
"learning_rate": 2.91853410737163e-05,
|
| 484 |
+
"loss": 0.74,
|
| 485 |
+
"step": 680
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.11610297829379101,
|
| 489 |
+
"grad_norm": 3.270117047516123,
|
| 490 |
+
"learning_rate": 2.915910011580426e-05,
|
| 491 |
+
"loss": 0.6829,
|
| 492 |
+
"step": 690
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.11778563015312132,
|
| 496 |
+
"grad_norm": 2.3219806056695367,
|
| 497 |
+
"learning_rate": 2.9132455385455176e-05,
|
| 498 |
+
"loss": 0.7062,
|
| 499 |
+
"step": 700
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.11946828201245162,
|
| 503 |
+
"grad_norm": 1.541921603113568,
|
| 504 |
+
"learning_rate": 2.9105407642491895e-05,
|
| 505 |
+
"loss": 0.7217,
|
| 506 |
+
"step": 710
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.12115093387178193,
|
| 510 |
+
"grad_norm": 1.557595298876376,
|
| 511 |
+
"learning_rate": 2.907795765822989e-05,
|
| 512 |
+
"loss": 0.7083,
|
| 513 |
+
"step": 720
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.12283358573111224,
|
| 517 |
+
"grad_norm": 2.3829156571868753,
|
| 518 |
+
"learning_rate": 2.9050106215455283e-05,
|
| 519 |
+
"loss": 0.6992,
|
| 520 |
+
"step": 730
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.12451623759044254,
|
| 524 |
+
"grad_norm": 7.536777098548366,
|
| 525 |
+
"learning_rate": 2.9021854108402516e-05,
|
| 526 |
+
"loss": 0.7248,
|
| 527 |
+
"step": 740
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.12619888944977284,
|
| 531 |
+
"grad_norm": 1.3408030642895519,
|
| 532 |
+
"learning_rate": 2.8993202142731693e-05,
|
| 533 |
+
"loss": 0.6375,
|
| 534 |
+
"step": 750
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.12788154130910315,
|
| 538 |
+
"grad_norm": 2.4880776314537254,
|
| 539 |
+
"learning_rate": 2.8964151135505616e-05,
|
| 540 |
+
"loss": 0.7063,
|
| 541 |
+
"step": 760
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.12956419316843346,
|
| 545 |
+
"grad_norm": 1.5507053769862247,
|
| 546 |
+
"learning_rate": 2.8934701915166477e-05,
|
| 547 |
+
"loss": 0.73,
|
| 548 |
+
"step": 770
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.13124684502776376,
|
| 552 |
+
"grad_norm": 3.5622930633942564,
|
| 553 |
+
"learning_rate": 2.890485532151225e-05,
|
| 554 |
+
"loss": 0.7521,
|
| 555 |
+
"step": 780
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.13292949688709407,
|
| 559 |
+
"grad_norm": 4.188153799459233,
|
| 560 |
+
"learning_rate": 2.887461220567271e-05,
|
| 561 |
+
"loss": 0.6841,
|
| 562 |
+
"step": 790
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.13461214874642435,
|
| 566 |
+
"grad_norm": 2.702901312773331,
|
| 567 |
+
"learning_rate": 2.8843973430085204e-05,
|
| 568 |
+
"loss": 0.694,
|
| 569 |
+
"step": 800
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.13629480060575466,
|
| 573 |
+
"grad_norm": 3.8663384632605293,
|
| 574 |
+
"learning_rate": 2.8812939868470016e-05,
|
| 575 |
+
"loss": 0.7376,
|
| 576 |
+
"step": 810
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.13797745246508497,
|
| 580 |
+
"grad_norm": 7.613582881082294,
|
| 581 |
+
"learning_rate": 2.878151240580548e-05,
|
| 582 |
+
"loss": 0.7082,
|
| 583 |
+
"step": 820
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.13966010432441528,
|
| 587 |
+
"grad_norm": 2.8755666754814015,
|
| 588 |
+
"learning_rate": 2.874969193830274e-05,
|
| 589 |
+
"loss": 0.7486,
|
| 590 |
+
"step": 830
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.1413427561837456,
|
| 594 |
+
"grad_norm": 2.049640563529798,
|
| 595 |
+
"learning_rate": 2.871747937338016e-05,
|
| 596 |
+
"loss": 0.7375,
|
| 597 |
+
"step": 840
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.1430254080430759,
|
| 601 |
+
"grad_norm": 3.2253208680917993,
|
| 602 |
+
"learning_rate": 2.8684875629637505e-05,
|
| 603 |
+
"loss": 0.7183,
|
| 604 |
+
"step": 850
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.1447080599024062,
|
| 608 |
+
"grad_norm": 2.0453993741696306,
|
| 609 |
+
"learning_rate": 2.8651881636829698e-05,
|
| 610 |
+
"loss": 0.6953,
|
| 611 |
+
"step": 860
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.1463907117617365,
|
| 615 |
+
"grad_norm": 1.3478445170381042,
|
| 616 |
+
"learning_rate": 2.861849833584032e-05,
|
| 617 |
+
"loss": 0.7205,
|
| 618 |
+
"step": 870
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.1480733636210668,
|
| 622 |
+
"grad_norm": 6.483405424500114,
|
| 623 |
+
"learning_rate": 2.8584726678654787e-05,
|
| 624 |
+
"loss": 0.7331,
|
| 625 |
+
"step": 880
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.1497560154803971,
|
| 629 |
+
"grad_norm": 1.6912080503281164,
|
| 630 |
+
"learning_rate": 2.85505676283332e-05,
|
| 631 |
+
"loss": 0.6985,
|
| 632 |
+
"step": 890
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.1514386673397274,
|
| 636 |
+
"grad_norm": 2.089097733011486,
|
| 637 |
+
"learning_rate": 2.851602215898287e-05,
|
| 638 |
+
"loss": 0.7291,
|
| 639 |
+
"step": 900
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.15312131919905772,
|
| 643 |
+
"grad_norm": 3.3599665631038325,
|
| 644 |
+
"learning_rate": 2.8481091255730552e-05,
|
| 645 |
+
"loss": 0.7125,
|
| 646 |
+
"step": 910
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.15480397105838803,
|
| 650 |
+
"grad_norm": 5.803874517218743,
|
| 651 |
+
"learning_rate": 2.844577591469435e-05,
|
| 652 |
+
"loss": 0.6614,
|
| 653 |
+
"step": 920
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.15648662291771834,
|
| 657 |
+
"grad_norm": 4.180624256153927,
|
| 658 |
+
"learning_rate": 2.8410077142955304e-05,
|
| 659 |
+
"loss": 0.6921,
|
| 660 |
+
"step": 930
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.15816927477704862,
|
| 664 |
+
"grad_norm": 2.51395384445247,
|
| 665 |
+
"learning_rate": 2.8373995958528683e-05,
|
| 666 |
+
"loss": 0.6788,
|
| 667 |
+
"step": 940
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.15985192663637893,
|
| 671 |
+
"grad_norm": 2.0786229734439,
|
| 672 |
+
"learning_rate": 2.8337533390334942e-05,
|
| 673 |
+
"loss": 0.6324,
|
| 674 |
+
"step": 950
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.16153457849570924,
|
| 678 |
+
"grad_norm": 2.1798201763285774,
|
| 679 |
+
"learning_rate": 2.8300690478170388e-05,
|
| 680 |
+
"loss": 0.7128,
|
| 681 |
+
"step": 960
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.16321723035503954,
|
| 685 |
+
"grad_norm": 1.7736042633296192,
|
| 686 |
+
"learning_rate": 2.826346827267753e-05,
|
| 687 |
+
"loss": 0.6854,
|
| 688 |
+
"step": 970
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.16489988221436985,
|
| 692 |
+
"grad_norm": 3.6499571810784377,
|
| 693 |
+
"learning_rate": 2.8225867835315114e-05,
|
| 694 |
+
"loss": 0.7246,
|
| 695 |
+
"step": 980
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.16658253407370016,
|
| 699 |
+
"grad_norm": 8.401076529411414,
|
| 700 |
+
"learning_rate": 2.8187890238327842e-05,
|
| 701 |
+
"loss": 0.7166,
|
| 702 |
+
"step": 990
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.16826518593303044,
|
| 706 |
+
"grad_norm": 1.6815155727131568,
|
| 707 |
+
"learning_rate": 2.814953656471583e-05,
|
| 708 |
+
"loss": 0.6962,
|
| 709 |
+
"step": 1000
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.16994783779236075,
|
| 713 |
+
"grad_norm": 3.59100648398944,
|
| 714 |
+
"learning_rate": 2.8110807908203682e-05,
|
| 715 |
+
"loss": 0.7271,
|
| 716 |
+
"step": 1010
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.17163048965169106,
|
| 720 |
+
"grad_norm": 2.9612400836384034,
|
| 721 |
+
"learning_rate": 2.8071705373209328e-05,
|
| 722 |
+
"loss": 0.7048,
|
| 723 |
+
"step": 1020
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.17331314151102137,
|
| 727 |
+
"grad_norm": 1.6314524411685434,
|
| 728 |
+
"learning_rate": 2.803223007481252e-05,
|
| 729 |
+
"loss": 0.7237,
|
| 730 |
+
"step": 1030
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.17499579337035168,
|
| 734 |
+
"grad_norm": 4.046292885407821,
|
| 735 |
+
"learning_rate": 2.7992383138723034e-05,
|
| 736 |
+
"loss": 0.7066,
|
| 737 |
+
"step": 1040
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.17667844522968199,
|
| 741 |
+
"grad_norm": 3.4626891652569665,
|
| 742 |
+
"learning_rate": 2.7952165701248573e-05,
|
| 743 |
+
"loss": 0.7537,
|
| 744 |
+
"step": 1050
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.1783610970890123,
|
| 748 |
+
"grad_norm": 4.129895397644279,
|
| 749 |
+
"learning_rate": 2.7911578909262353e-05,
|
| 750 |
+
"loss": 0.7348,
|
| 751 |
+
"step": 1060
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.18004374894834257,
|
| 755 |
+
"grad_norm": 2.1894044487856847,
|
| 756 |
+
"learning_rate": 2.787062392017041e-05,
|
| 757 |
+
"loss": 0.7145,
|
| 758 |
+
"step": 1070
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.18172640080767288,
|
| 762 |
+
"grad_norm": 2.988495224416439,
|
| 763 |
+
"learning_rate": 2.7829301901878592e-05,
|
| 764 |
+
"loss": 0.7091,
|
| 765 |
+
"step": 1080
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.1834090526670032,
|
| 769 |
+
"grad_norm": 2.493227176786327,
|
| 770 |
+
"learning_rate": 2.7787614032759243e-05,
|
| 771 |
+
"loss": 0.7427,
|
| 772 |
+
"step": 1090
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.1850917045263335,
|
| 776 |
+
"grad_norm": 2.9382266505350723,
|
| 777 |
+
"learning_rate": 2.7745561501617605e-05,
|
| 778 |
+
"loss": 0.7081,
|
| 779 |
+
"step": 1100
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.1867743563856638,
|
| 783 |
+
"grad_norm": 1.9294251174769146,
|
| 784 |
+
"learning_rate": 2.7703145507657923e-05,
|
| 785 |
+
"loss": 0.679,
|
| 786 |
+
"step": 1110
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.18845700824499412,
|
| 790 |
+
"grad_norm": 7.011830550553666,
|
| 791 |
+
"learning_rate": 2.766036726044926e-05,
|
| 792 |
+
"loss": 0.6962,
|
| 793 |
+
"step": 1120
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.19013966010432443,
|
| 797 |
+
"grad_norm": 1.8058177496791177,
|
| 798 |
+
"learning_rate": 2.7617227979890957e-05,
|
| 799 |
+
"loss": 0.6953,
|
| 800 |
+
"step": 1130
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.1918223119636547,
|
| 804 |
+
"grad_norm": 2.2546595962288727,
|
| 805 |
+
"learning_rate": 2.7573728896177897e-05,
|
| 806 |
+
"loss": 0.6853,
|
| 807 |
+
"step": 1140
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.19350496382298502,
|
| 811 |
+
"grad_norm": 1.7701647300358836,
|
| 812 |
+
"learning_rate": 2.7529871249765397e-05,
|
| 813 |
+
"loss": 0.737,
|
| 814 |
+
"step": 1150
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.19518761568231532,
|
| 818 |
+
"grad_norm": 3.2767535691041396,
|
| 819 |
+
"learning_rate": 2.7485656291333845e-05,
|
| 820 |
+
"loss": 0.6878,
|
| 821 |
+
"step": 1160
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.19687026754164563,
|
| 825 |
+
"grad_norm": 1.231100350207441,
|
| 826 |
+
"learning_rate": 2.7441085281753028e-05,
|
| 827 |
+
"loss": 0.7044,
|
| 828 |
+
"step": 1170
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.19855291940097594,
|
| 832 |
+
"grad_norm": 5.103379397758491,
|
| 833 |
+
"learning_rate": 2.739615949204617e-05,
|
| 834 |
+
"loss": 0.7028,
|
| 835 |
+
"step": 1180
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.20023557126030625,
|
| 839 |
+
"grad_norm": 1.745258105735824,
|
| 840 |
+
"learning_rate": 2.7350880203353703e-05,
|
| 841 |
+
"loss": 0.7123,
|
| 842 |
+
"step": 1190
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.20191822311963656,
|
| 846 |
+
"grad_norm": 2.528898960464809,
|
| 847 |
+
"learning_rate": 2.7305248706896722e-05,
|
| 848 |
+
"loss": 0.7242,
|
| 849 |
+
"step": 1200
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.20360087497896684,
|
| 853 |
+
"grad_norm": 1.329326803950539,
|
| 854 |
+
"learning_rate": 2.7259266303940164e-05,
|
| 855 |
+
"loss": 0.7315,
|
| 856 |
+
"step": 1210
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.20528352683829715,
|
| 860 |
+
"grad_norm": 3.523954433912976,
|
| 861 |
+
"learning_rate": 2.7212934305755697e-05,
|
| 862 |
+
"loss": 0.7022,
|
| 863 |
+
"step": 1220
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.20696617869762746,
|
| 867 |
+
"grad_norm": 1.3845861665687345,
|
| 868 |
+
"learning_rate": 2.7166254033584343e-05,
|
| 869 |
+
"loss": 0.6788,
|
| 870 |
+
"step": 1230
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.20864883055695777,
|
| 874 |
+
"grad_norm": 1.6893702845026013,
|
| 875 |
+
"learning_rate": 2.7119226818598784e-05,
|
| 876 |
+
"loss": 0.7083,
|
| 877 |
+
"step": 1240
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.21033148241628807,
|
| 881 |
+
"grad_norm": 3.481606379952265,
|
| 882 |
+
"learning_rate": 2.7071854001865402e-05,
|
| 883 |
+
"loss": 0.7104,
|
| 884 |
+
"step": 1250
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.21201413427561838,
|
| 888 |
+
"grad_norm": 1.3880604016054,
|
| 889 |
+
"learning_rate": 2.702413693430604e-05,
|
| 890 |
+
"loss": 0.7192,
|
| 891 |
+
"step": 1260
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.2136967861349487,
|
| 895 |
+
"grad_norm": 2.7420634271532625,
|
| 896 |
+
"learning_rate": 2.697607697665948e-05,
|
| 897 |
+
"loss": 0.7329,
|
| 898 |
+
"step": 1270
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.21537943799427897,
|
| 902 |
+
"grad_norm": 1.3383701328350484,
|
| 903 |
+
"learning_rate": 2.6927675499442648e-05,
|
| 904 |
+
"loss": 0.7523,
|
| 905 |
+
"step": 1280
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.21706208985360928,
|
| 909 |
+
"grad_norm": 5.63600709352392,
|
| 910 |
+
"learning_rate": 2.68789338829115e-05,
|
| 911 |
+
"loss": 0.6938,
|
| 912 |
+
"step": 1290
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.2187447417129396,
|
| 916 |
+
"grad_norm": 1.973997298554772,
|
| 917 |
+
"learning_rate": 2.6829853517021698e-05,
|
| 918 |
+
"loss": 0.7024,
|
| 919 |
+
"step": 1300
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.2204273935722699,
|
| 923 |
+
"grad_norm": 5.331233664305369,
|
| 924 |
+
"learning_rate": 2.6780435801388945e-05,
|
| 925 |
+
"loss": 0.6978,
|
| 926 |
+
"step": 1310
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.2221100454316002,
|
| 930 |
+
"grad_norm": 14.545018258920948,
|
| 931 |
+
"learning_rate": 2.6730682145249093e-05,
|
| 932 |
+
"loss": 0.7288,
|
| 933 |
+
"step": 1320
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.22379269729093051,
|
| 937 |
+
"grad_norm": 2.772459303589031,
|
| 938 |
+
"learning_rate": 2.668059396741795e-05,
|
| 939 |
+
"loss": 0.69,
|
| 940 |
+
"step": 1330
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.22547534915026082,
|
| 944 |
+
"grad_norm": 1.9806140492727284,
|
| 945 |
+
"learning_rate": 2.6630172696250804e-05,
|
| 946 |
+
"loss": 0.7194,
|
| 947 |
+
"step": 1340
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.2271580010095911,
|
| 951 |
+
"grad_norm": 2.5305067313330305,
|
| 952 |
+
"learning_rate": 2.6579419769601715e-05,
|
| 953 |
+
"loss": 0.7209,
|
| 954 |
+
"step": 1350
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.2288406528689214,
|
| 958 |
+
"grad_norm": 4.329479239778255,
|
| 959 |
+
"learning_rate": 2.6528336634782493e-05,
|
| 960 |
+
"loss": 0.7263,
|
| 961 |
+
"step": 1360
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.23052330472825172,
|
| 965 |
+
"grad_norm": 2.4385930080514124,
|
| 966 |
+
"learning_rate": 2.6476924748521443e-05,
|
| 967 |
+
"loss": 0.7169,
|
| 968 |
+
"step": 1370
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.23220595658758203,
|
| 972 |
+
"grad_norm": 4.486791723774815,
|
| 973 |
+
"learning_rate": 2.6425185576921812e-05,
|
| 974 |
+
"loss": 0.6791,
|
| 975 |
+
"step": 1380
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.23388860844691234,
|
| 979 |
+
"grad_norm": 2.1648975510177353,
|
| 980 |
+
"learning_rate": 2.637312059541997e-05,
|
| 981 |
+
"loss": 0.722,
|
| 982 |
+
"step": 1390
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.23557126030624265,
|
| 986 |
+
"grad_norm": 2.497984836932449,
|
| 987 |
+
"learning_rate": 2.632073128874336e-05,
|
| 988 |
+
"loss": 0.737,
|
| 989 |
+
"step": 1400
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.23725391216557296,
|
| 993 |
+
"grad_norm": 1.6911389710154248,
|
| 994 |
+
"learning_rate": 2.6268019150868144e-05,
|
| 995 |
+
"loss": 0.7027,
|
| 996 |
+
"step": 1410
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.23893656402490324,
|
| 1000 |
+
"grad_norm": 5.094854691429602,
|
| 1001 |
+
"learning_rate": 2.62149856849766e-05,
|
| 1002 |
+
"loss": 0.7431,
|
| 1003 |
+
"step": 1420
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.24061921588423354,
|
| 1007 |
+
"grad_norm": 1.6056704058079299,
|
| 1008 |
+
"learning_rate": 2.616163240341426e-05,
|
| 1009 |
+
"loss": 0.7215,
|
| 1010 |
+
"step": 1430
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.24230186774356385,
|
| 1014 |
+
"grad_norm": 2.0440590394408793,
|
| 1015 |
+
"learning_rate": 2.6107960827646774e-05,
|
| 1016 |
+
"loss": 0.6864,
|
| 1017 |
+
"step": 1440
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.24398451960289416,
|
| 1021 |
+
"grad_norm": 1.4019933491248435,
|
| 1022 |
+
"learning_rate": 2.6053972488216538e-05,
|
| 1023 |
+
"loss": 0.7007,
|
| 1024 |
+
"step": 1450
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.24566717146222447,
|
| 1028 |
+
"grad_norm": 6.4772716175425185,
|
| 1029 |
+
"learning_rate": 2.5999668924699035e-05,
|
| 1030 |
+
"loss": 0.6963,
|
| 1031 |
+
"step": 1460
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.24734982332155478,
|
| 1035 |
+
"grad_norm": 1.235157923543473,
|
| 1036 |
+
"learning_rate": 2.5945051685658923e-05,
|
| 1037 |
+
"loss": 0.7158,
|
| 1038 |
+
"step": 1470
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.2490324751808851,
|
| 1042 |
+
"grad_norm": 1.6576585358395288,
|
| 1043 |
+
"learning_rate": 2.5890122328605908e-05,
|
| 1044 |
+
"loss": 0.6918,
|
| 1045 |
+
"step": 1480
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.25071512704021537,
|
| 1049 |
+
"grad_norm": 2.6005430314710645,
|
| 1050 |
+
"learning_rate": 2.5834882419950295e-05,
|
| 1051 |
+
"loss": 0.6666,
|
| 1052 |
+
"step": 1490
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.2523977788995457,
|
| 1056 |
+
"grad_norm": 3.83061566974576,
|
| 1057 |
+
"learning_rate": 2.577933353495833e-05,
|
| 1058 |
+
"loss": 0.724,
|
| 1059 |
+
"step": 1500
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.254080430758876,
|
| 1063 |
+
"grad_norm": 2.259260300802235,
|
| 1064 |
+
"learning_rate": 2.5723477257707293e-05,
|
| 1065 |
+
"loss": 0.725,
|
| 1066 |
+
"step": 1510
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.2557630826182063,
|
| 1070 |
+
"grad_norm": 3.1023391020410283,
|
| 1071 |
+
"learning_rate": 2.566731518104029e-05,
|
| 1072 |
+
"loss": 0.709,
|
| 1073 |
+
"step": 1520
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.2574457344775366,
|
| 1077 |
+
"grad_norm": 2.375072076607274,
|
| 1078 |
+
"learning_rate": 2.5610848906520878e-05,
|
| 1079 |
+
"loss": 0.7031,
|
| 1080 |
+
"step": 1530
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.2591283863368669,
|
| 1084 |
+
"grad_norm": 1.638162563319741,
|
| 1085 |
+
"learning_rate": 2.5554080044387344e-05,
|
| 1086 |
+
"loss": 0.7031,
|
| 1087 |
+
"step": 1540
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 0.2608110381961972,
|
| 1091 |
+
"grad_norm": 8.846026339935685,
|
| 1092 |
+
"learning_rate": 2.5497010213506825e-05,
|
| 1093 |
+
"loss": 0.7119,
|
| 1094 |
+
"step": 1550
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.26249369005552753,
|
| 1098 |
+
"grad_norm": 4.589496329936434,
|
| 1099 |
+
"learning_rate": 2.5439641041329128e-05,
|
| 1100 |
+
"loss": 0.7043,
|
| 1101 |
+
"step": 1560
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.26417634191485784,
|
| 1105 |
+
"grad_norm": 0.9945782670551377,
|
| 1106 |
+
"learning_rate": 2.5381974163840313e-05,
|
| 1107 |
+
"loss": 0.7026,
|
| 1108 |
+
"step": 1570
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.26585899377418815,
|
| 1112 |
+
"grad_norm": 2.341138070970226,
|
| 1113 |
+
"learning_rate": 2.532401122551605e-05,
|
| 1114 |
+
"loss": 0.744,
|
| 1115 |
+
"step": 1580
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 0.2675416456335184,
|
| 1119 |
+
"grad_norm": 3.446122331658564,
|
| 1120 |
+
"learning_rate": 2.526575387927473e-05,
|
| 1121 |
+
"loss": 0.6861,
|
| 1122 |
+
"step": 1590
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.2692242974928487,
|
| 1126 |
+
"grad_norm": 4.165637435951758,
|
| 1127 |
+
"learning_rate": 2.52072037864303e-05,
|
| 1128 |
+
"loss": 0.7065,
|
| 1129 |
+
"step": 1600
|
| 1130 |
+
}
|
| 1131 |
+
],
|
| 1132 |
+
"logging_steps": 10,
|
| 1133 |
+
"max_steps": 5943,
|
| 1134 |
+
"num_input_tokens_seen": 0,
|
| 1135 |
+
"num_train_epochs": 1,
|
| 1136 |
+
"save_steps": 400,
|
| 1137 |
+
"stateful_callbacks": {
|
| 1138 |
+
"TrainerControl": {
|
| 1139 |
+
"args": {
|
| 1140 |
+
"should_epoch_stop": false,
|
| 1141 |
+
"should_evaluate": false,
|
| 1142 |
+
"should_log": false,
|
| 1143 |
+
"should_save": true,
|
| 1144 |
+
"should_training_stop": false
|
| 1145 |
+
},
|
| 1146 |
+
"attributes": {}
|
| 1147 |
+
}
|
| 1148 |
+
},
|
| 1149 |
+
"total_flos": 7.289521573986304e+18,
|
| 1150 |
+
"train_batch_size": 4,
|
| 1151 |
+
"trial_name": null,
|
| 1152 |
+
"trial_params": null
|
| 1153 |
+
}
|
checkpoint-1600/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fbdba9805bd0d1a205737e79e7c8cc90395bd2d30f5c02b0fe337cbf2b804f7
|
| 3 |
+
size 6520
|
checkpoint-1600/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 252 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 253 |
+
|
| 254 |
+
# Reconstruction protocol:
|
| 255 |
+
#
|
| 256 |
+
# XXX: document this
|
| 257 |
+
|
| 258 |
+
if debug:
|
| 259 |
+
for i in range(world_size):
|
| 260 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 262 |
+
|
| 263 |
+
# XXX: memory usage doubles here (zero2)
|
| 264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 265 |
+
merged_single_partition_of_fp32_groups = []
|
| 266 |
+
for i in range(num_param_groups):
|
| 267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 270 |
+
avail_numel = sum(
|
| 271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 272 |
+
|
| 273 |
+
if debug:
|
| 274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 276 |
+
# not asserting if there is a mismatch due to possible padding
|
| 277 |
+
print(f"Have {avail_numel} numels to process.")
|
| 278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 279 |
+
|
| 280 |
+
# params
|
| 281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 282 |
+
# out-of-core computing solution
|
| 283 |
+
total_numel = 0
|
| 284 |
+
total_params = 0
|
| 285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 286 |
+
offset = 0
|
| 287 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 288 |
+
for name, shape in shapes.items():
|
| 289 |
+
|
| 290 |
+
unpartitioned_numel = shape.numel()
|
| 291 |
+
total_numel += unpartitioned_numel
|
| 292 |
+
total_params += 1
|
| 293 |
+
|
| 294 |
+
if debug:
|
| 295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 297 |
+
offset += unpartitioned_numel
|
| 298 |
+
|
| 299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 303 |
+
align_to = 2 * world_size
|
| 304 |
+
|
| 305 |
+
def zero2_align(x):
|
| 306 |
+
return align_to * math.ceil(x / align_to)
|
| 307 |
+
|
| 308 |
+
if debug:
|
| 309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 310 |
+
|
| 311 |
+
offset = zero2_align(offset)
|
| 312 |
+
avail_numel = zero2_align(avail_numel)
|
| 313 |
+
|
| 314 |
+
if debug:
|
| 315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 316 |
+
|
| 317 |
+
# Sanity check
|
| 318 |
+
if offset != avail_numel:
|
| 319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 320 |
+
|
| 321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 325 |
+
state_dict = OrderedDict()
|
| 326 |
+
|
| 327 |
+
# buffers
|
| 328 |
+
buffers = zero_model_states[0].buffers
|
| 329 |
+
state_dict.update(buffers)
|
| 330 |
+
if debug:
|
| 331 |
+
print(f"added {len(buffers)} buffers")
|
| 332 |
+
|
| 333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 334 |
+
|
| 335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 336 |
+
|
| 337 |
+
# recover shared parameters
|
| 338 |
+
for pair in zero_model_states[0].shared_params:
|
| 339 |
+
if pair[1] in state_dict:
|
| 340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 341 |
+
|
| 342 |
+
return state_dict
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 346 |
+
remainder = unpartitioned_numel % world_size
|
| 347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 349 |
+
return partitioned_numel, padding_numel
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 354 |
+
return
|
| 355 |
+
|
| 356 |
+
if debug:
|
| 357 |
+
for i in range(world_size):
|
| 358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 360 |
+
|
| 361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 362 |
+
wanted_params = len(frozen_param_shapes)
|
| 363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 367 |
+
|
| 368 |
+
total_params = 0
|
| 369 |
+
total_numel = 0
|
| 370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 371 |
+
total_params += 1
|
| 372 |
+
unpartitioned_numel = shape.numel()
|
| 373 |
+
total_numel += unpartitioned_numel
|
| 374 |
+
|
| 375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 377 |
+
|
| 378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 379 |
+
|
| 380 |
+
if debug:
|
| 381 |
+
print(
|
| 382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 389 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 393 |
+
|
| 394 |
+
# merge list of dicts, preserving order
|
| 395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 396 |
+
|
| 397 |
+
if debug:
|
| 398 |
+
for i in range(world_size):
|
| 399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 400 |
+
|
| 401 |
+
wanted_params = len(param_shapes)
|
| 402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 403 |
+
# not asserting if there is a mismatch due to possible padding
|
| 404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 407 |
+
|
| 408 |
+
# params
|
| 409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 410 |
+
# out-of-core computing solution
|
| 411 |
+
offset = 0
|
| 412 |
+
total_numel = 0
|
| 413 |
+
total_params = 0
|
| 414 |
+
for name, shape in param_shapes.items():
|
| 415 |
+
|
| 416 |
+
unpartitioned_numel = shape.numel()
|
| 417 |
+
total_numel += unpartitioned_numel
|
| 418 |
+
total_params += 1
|
| 419 |
+
|
| 420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 421 |
+
|
| 422 |
+
if debug:
|
| 423 |
+
print(
|
| 424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# XXX: memory usage doubles here
|
| 428 |
+
state_dict[name] = torch.cat(
|
| 429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 431 |
+
offset += partitioned_numel
|
| 432 |
+
|
| 433 |
+
offset *= world_size
|
| 434 |
+
|
| 435 |
+
# Sanity check
|
| 436 |
+
if offset != avail_numel:
|
| 437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 438 |
+
|
| 439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 443 |
+
state_dict = OrderedDict()
|
| 444 |
+
|
| 445 |
+
# buffers
|
| 446 |
+
buffers = zero_model_states[0].buffers
|
| 447 |
+
state_dict.update(buffers)
|
| 448 |
+
if debug:
|
| 449 |
+
print(f"added {len(buffers)} buffers")
|
| 450 |
+
|
| 451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 452 |
+
|
| 453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 454 |
+
|
| 455 |
+
# recover shared parameters
|
| 456 |
+
for pair in zero_model_states[0].shared_params:
|
| 457 |
+
if pair[1] in state_dict:
|
| 458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 459 |
+
|
| 460 |
+
return state_dict
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 464 |
+
"""
|
| 465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 467 |
+
via a model hub.
|
| 468 |
+
|
| 469 |
+
Args:
|
| 470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 472 |
+
|
| 473 |
+
Returns:
|
| 474 |
+
- pytorch ``state_dict``
|
| 475 |
+
|
| 476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 478 |
+
the checkpoint.
|
| 479 |
+
|
| 480 |
+
A typical usage might be ::
|
| 481 |
+
|
| 482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 483 |
+
# do the training and checkpoint saving
|
| 484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 485 |
+
model = model.cpu() # move to cpu
|
| 486 |
+
model.load_state_dict(state_dict)
|
| 487 |
+
# submit to model hub or save the model to share with others
|
| 488 |
+
|
| 489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 492 |
+
|
| 493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 494 |
+
|
| 495 |
+
"""
|
| 496 |
+
if tag is None:
|
| 497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 498 |
+
if os.path.isfile(latest_path):
|
| 499 |
+
with open(latest_path, 'r') as fd:
|
| 500 |
+
tag = fd.read().strip()
|
| 501 |
+
else:
|
| 502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 503 |
+
|
| 504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 505 |
+
|
| 506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 508 |
+
|
| 509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 513 |
+
"""
|
| 514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 516 |
+
|
| 517 |
+
Args:
|
| 518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 521 |
+
"""
|
| 522 |
+
|
| 523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 525 |
+
torch.save(state_dict, output_file)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 529 |
+
"""
|
| 530 |
+
1. Put the provided model to cpu
|
| 531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 532 |
+
3. Load it into the provided model
|
| 533 |
+
|
| 534 |
+
Args:
|
| 535 |
+
- ``model``: the model object to update
|
| 536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 538 |
+
|
| 539 |
+
Returns:
|
| 540 |
+
- ``model`: modified model
|
| 541 |
+
|
| 542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 544 |
+
conveniently placed for you in the checkpoint folder.
|
| 545 |
+
|
| 546 |
+
A typical usage might be ::
|
| 547 |
+
|
| 548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 550 |
+
# submit to model hub or save the model to share with others
|
| 551 |
+
|
| 552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 555 |
+
|
| 556 |
+
"""
|
| 557 |
+
logger.info(f"Extracting fp32 weights")
|
| 558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 559 |
+
|
| 560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 561 |
+
model = model.cpu()
|
| 562 |
+
model.load_state_dict(state_dict, strict=False)
|
| 563 |
+
|
| 564 |
+
return model
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
if __name__ == "__main__":
|
| 568 |
+
|
| 569 |
+
parser = argparse.ArgumentParser()
|
| 570 |
+
parser.add_argument("checkpoint_dir",
|
| 571 |
+
type=str,
|
| 572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 573 |
+
parser.add_argument(
|
| 574 |
+
"output_file",
|
| 575 |
+
type=str,
|
| 576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 577 |
+
parser.add_argument("-t",
|
| 578 |
+
"--tag",
|
| 579 |
+
type=str,
|
| 580 |
+
default=None,
|
| 581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 583 |
+
args = parser.parse_args()
|
| 584 |
+
|
| 585 |
+
debug = args.debug
|
| 586 |
+
|
| 587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-2000/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: Qwen/Qwen-VL-Chat
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
checkpoint-2000/adapter_config.json
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 16,
|
| 14 |
+
"lora_dropout": 0.05,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 64,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
| 24 |
+
"transformer.h.11.attn.c_attn",
|
| 25 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
| 26 |
+
"transformer.h.26.mlp.c_proj",
|
| 27 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
| 28 |
+
"transformer.h.20.mlp.c_proj",
|
| 29 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
| 30 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
| 31 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
| 32 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
| 33 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
| 34 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
| 35 |
+
"transformer.h.1.mlp.c_proj",
|
| 36 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
| 37 |
+
"transformer.h.28.attn.c_attn",
|
| 38 |
+
"transformer.h.19.attn.c_proj",
|
| 39 |
+
"transformer.h.29.mlp.c_proj",
|
| 40 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
| 41 |
+
"transformer.h.17.attn.c_attn",
|
| 42 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
| 43 |
+
"transformer.h.16.mlp.c_proj",
|
| 44 |
+
"transformer.h.19.mlp.w2",
|
| 45 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
| 46 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
| 47 |
+
"transformer.h.0.mlp.w2",
|
| 48 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
| 49 |
+
"transformer.h.3.mlp.c_proj",
|
| 50 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
| 51 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
| 52 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
| 53 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
| 54 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
| 55 |
+
"transformer.h.0.mlp.w1",
|
| 56 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
| 57 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
| 58 |
+
"transformer.visual.conv1",
|
| 59 |
+
"transformer.h.22.mlp.w2",
|
| 60 |
+
"transformer.h.21.mlp.w2",
|
| 61 |
+
"transformer.h.13.attn.c_attn",
|
| 62 |
+
"transformer.h.10.mlp.w1",
|
| 63 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
| 64 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
| 65 |
+
"transformer.h.16.mlp.w2",
|
| 66 |
+
"transformer.h.8.attn.c_proj",
|
| 67 |
+
"transformer.h.30.mlp.w1",
|
| 68 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
| 69 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
| 70 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
| 71 |
+
"transformer.h.23.attn.c_proj",
|
| 72 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
| 73 |
+
"transformer.h.25.mlp.c_proj",
|
| 74 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
| 75 |
+
"transformer.h.15.attn.c_attn",
|
| 76 |
+
"transformer.h.2.mlp.w1",
|
| 77 |
+
"transformer.h.4.mlp.w1",
|
| 78 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
| 79 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
| 80 |
+
"transformer.h.30.attn.c_attn",
|
| 81 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
| 82 |
+
"transformer.h.8.mlp.c_proj",
|
| 83 |
+
"transformer.h.8.mlp.w2",
|
| 84 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
| 85 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
| 86 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
| 87 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
| 88 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
| 89 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
| 90 |
+
"transformer.h.8.mlp.w1",
|
| 91 |
+
"transformer.h.31.mlp.w1",
|
| 92 |
+
"transformer.h.4.attn.c_attn",
|
| 93 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
| 94 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
| 95 |
+
"transformer.h.13.attn.c_proj",
|
| 96 |
+
"transformer.h.24.attn.c_attn",
|
| 97 |
+
"transformer.h.27.attn.c_attn",
|
| 98 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
| 99 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
| 100 |
+
"transformer.h.31.mlp.c_proj",
|
| 101 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
| 102 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
| 103 |
+
"transformer.h.10.mlp.w2",
|
| 104 |
+
"transformer.h.21.attn.c_attn",
|
| 105 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
| 106 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
| 107 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
| 108 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
| 109 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
| 110 |
+
"transformer.h.18.mlp.w2",
|
| 111 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
| 112 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
| 113 |
+
"transformer.h.12.mlp.w1",
|
| 114 |
+
"transformer.h.7.mlp.w1",
|
| 115 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
| 116 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
| 117 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
| 118 |
+
"transformer.h.23.attn.c_attn",
|
| 119 |
+
"transformer.h.27.mlp.w2",
|
| 120 |
+
"transformer.h.17.mlp.w2",
|
| 121 |
+
"transformer.h.20.mlp.w2",
|
| 122 |
+
"transformer.h.22.mlp.c_proj",
|
| 123 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
| 124 |
+
"transformer.h.27.mlp.c_proj",
|
| 125 |
+
"transformer.h.0.attn.c_proj",
|
| 126 |
+
"transformer.h.5.attn.c_attn",
|
| 127 |
+
"transformer.h.24.mlp.w2",
|
| 128 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
| 129 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
| 130 |
+
"transformer.h.5.mlp.c_proj",
|
| 131 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
| 132 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
| 133 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
| 134 |
+
"transformer.h.26.attn.c_proj",
|
| 135 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
| 136 |
+
"transformer.h.29.attn.c_attn",
|
| 137 |
+
"transformer.h.15.attn.c_proj",
|
| 138 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
| 139 |
+
"transformer.h.4.mlp.c_proj",
|
| 140 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
| 141 |
+
"transformer.h.0.mlp.c_proj",
|
| 142 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
| 143 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
| 144 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
| 145 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
| 146 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
| 147 |
+
"transformer.h.15.mlp.w2",
|
| 148 |
+
"transformer.h.3.attn.c_attn",
|
| 149 |
+
"transformer.h.28.mlp.w1",
|
| 150 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
| 151 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
| 152 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
| 153 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
| 154 |
+
"transformer.h.31.attn.c_proj",
|
| 155 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
| 156 |
+
"transformer.h.17.mlp.w1",
|
| 157 |
+
"transformer.h.18.mlp.c_proj",
|
| 158 |
+
"transformer.h.19.mlp.c_proj",
|
| 159 |
+
"transformer.h.9.mlp.w2",
|
| 160 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
| 161 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
| 162 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
| 163 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
| 164 |
+
"transformer.h.30.mlp.w2",
|
| 165 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
| 166 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
| 167 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
| 168 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
| 169 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
| 170 |
+
"transformer.h.28.mlp.c_proj",
|
| 171 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
| 172 |
+
"transformer.h.22.attn.c_attn",
|
| 173 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
| 174 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
| 175 |
+
"transformer.h.0.attn.c_attn",
|
| 176 |
+
"transformer.h.11.mlp.w2",
|
| 177 |
+
"transformer.h.19.mlp.w1",
|
| 178 |
+
"transformer.h.26.mlp.w2",
|
| 179 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
| 180 |
+
"transformer.h.29.mlp.w2",
|
| 181 |
+
"transformer.h.27.attn.c_proj",
|
| 182 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
| 183 |
+
"transformer.h.17.mlp.c_proj",
|
| 184 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
| 185 |
+
"transformer.h.6.attn.c_attn",
|
| 186 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
| 187 |
+
"transformer.h.21.mlp.w1",
|
| 188 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
| 189 |
+
"transformer.h.20.mlp.w1",
|
| 190 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
| 191 |
+
"transformer.h.23.mlp.c_proj",
|
| 192 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
| 193 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
| 194 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
| 195 |
+
"transformer.h.9.mlp.c_proj",
|
| 196 |
+
"transformer.h.7.attn.c_attn",
|
| 197 |
+
"transformer.h.29.mlp.w1",
|
| 198 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
| 199 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
| 200 |
+
"transformer.h.11.mlp.w1",
|
| 201 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
| 202 |
+
"transformer.h.5.mlp.w2",
|
| 203 |
+
"transformer.h.11.attn.c_proj",
|
| 204 |
+
"transformer.h.18.attn.c_attn",
|
| 205 |
+
"transformer.h.6.mlp.w1",
|
| 206 |
+
"transformer.h.27.mlp.w1",
|
| 207 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
| 208 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
| 209 |
+
"transformer.h.25.attn.c_attn",
|
| 210 |
+
"transformer.h.1.mlp.w2",
|
| 211 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
| 212 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
| 213 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
| 214 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
| 215 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
| 216 |
+
"transformer.h.14.mlp.w1",
|
| 217 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
| 218 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
| 219 |
+
"transformer.h.16.attn.c_attn",
|
| 220 |
+
"transformer.h.3.mlp.w1",
|
| 221 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
| 222 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
| 223 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
| 224 |
+
"transformer.h.15.mlp.w1",
|
| 225 |
+
"transformer.h.9.attn.c_proj",
|
| 226 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
| 227 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
| 228 |
+
"transformer.h.12.attn.c_attn",
|
| 229 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
| 230 |
+
"transformer.h.28.attn.c_proj",
|
| 231 |
+
"transformer.h.13.mlp.w2",
|
| 232 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
| 233 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
| 234 |
+
"transformer.h.22.mlp.w1",
|
| 235 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
| 236 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
| 237 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
| 238 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
| 239 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
| 240 |
+
"transformer.h.24.mlp.w1",
|
| 241 |
+
"transformer.h.12.mlp.w2",
|
| 242 |
+
"transformer.h.30.mlp.c_proj",
|
| 243 |
+
"transformer.h.3.attn.c_proj",
|
| 244 |
+
"transformer.h.11.mlp.c_proj",
|
| 245 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
| 246 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
| 247 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
| 248 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
| 249 |
+
"transformer.h.18.mlp.w1",
|
| 250 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
| 251 |
+
"transformer.h.23.mlp.w1",
|
| 252 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
| 253 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
| 254 |
+
"transformer.h.1.mlp.w1",
|
| 255 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
| 256 |
+
"transformer.h.29.attn.c_proj",
|
| 257 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
| 258 |
+
"transformer.h.21.attn.c_proj",
|
| 259 |
+
"transformer.h.7.attn.c_proj",
|
| 260 |
+
"transformer.h.12.mlp.c_proj",
|
| 261 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
| 262 |
+
"transformer.h.17.attn.c_proj",
|
| 263 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
| 264 |
+
"transformer.h.20.attn.c_attn",
|
| 265 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
| 266 |
+
"transformer.h.14.attn.c_proj",
|
| 267 |
+
"transformer.h.13.mlp.c_proj",
|
| 268 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
| 269 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
| 270 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
| 271 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
| 272 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
| 273 |
+
"transformer.h.23.mlp.w2",
|
| 274 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
| 275 |
+
"transformer.h.8.attn.c_attn",
|
| 276 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
| 277 |
+
"transformer.h.14.mlp.w2",
|
| 278 |
+
"transformer.h.7.mlp.w2",
|
| 279 |
+
"transformer.h.26.mlp.w1",
|
| 280 |
+
"transformer.h.6.mlp.w2",
|
| 281 |
+
"transformer.h.31.attn.c_attn",
|
| 282 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
| 283 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
| 284 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
| 285 |
+
"transformer.h.28.mlp.w2",
|
| 286 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
| 287 |
+
"transformer.h.2.mlp.w2",
|
| 288 |
+
"transformer.h.2.attn.c_attn",
|
| 289 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
| 290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
| 291 |
+
"transformer.h.18.attn.c_proj",
|
| 292 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
| 293 |
+
"transformer.h.12.attn.c_proj",
|
| 294 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
| 295 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
| 296 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
| 297 |
+
"transformer.h.24.attn.c_proj",
|
| 298 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
| 299 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
| 300 |
+
"transformer.h.26.attn.c_attn",
|
| 301 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
| 302 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
| 303 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
| 304 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
| 305 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
| 306 |
+
"transformer.h.21.mlp.c_proj",
|
| 307 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
| 308 |
+
"transformer.h.14.mlp.c_proj",
|
| 309 |
+
"transformer.h.24.mlp.c_proj",
|
| 310 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
| 311 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
| 312 |
+
"transformer.h.7.mlp.c_proj",
|
| 313 |
+
"transformer.h.14.attn.c_attn",
|
| 314 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
| 315 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
| 316 |
+
"transformer.h.2.attn.c_proj",
|
| 317 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
| 318 |
+
"transformer.h.9.attn.c_attn",
|
| 319 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
| 320 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
| 321 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
| 322 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
| 323 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
| 324 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
| 325 |
+
"transformer.h.25.mlp.w1",
|
| 326 |
+
"transformer.h.10.attn.c_proj",
|
| 327 |
+
"transformer.h.16.mlp.w1",
|
| 328 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
| 329 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
| 330 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
| 331 |
+
"transformer.h.13.mlp.w1",
|
| 332 |
+
"transformer.h.15.mlp.c_proj",
|
| 333 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
| 334 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
| 335 |
+
"transformer.h.10.mlp.c_proj",
|
| 336 |
+
"transformer.h.16.attn.c_proj",
|
| 337 |
+
"transformer.h.6.attn.c_proj",
|
| 338 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
| 339 |
+
"transformer.h.5.attn.c_proj",
|
| 340 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
| 341 |
+
"transformer.h.1.attn.c_proj",
|
| 342 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
| 343 |
+
"transformer.h.5.mlp.w1",
|
| 344 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
| 345 |
+
"transformer.h.6.mlp.c_proj",
|
| 346 |
+
"transformer.h.31.mlp.w2",
|
| 347 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
| 348 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
| 349 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
| 350 |
+
"transformer.h.10.attn.c_attn",
|
| 351 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
| 352 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
| 353 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
| 354 |
+
"transformer.h.25.attn.c_proj",
|
| 355 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
| 356 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
| 357 |
+
"transformer.h.4.mlp.w2",
|
| 358 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
| 359 |
+
"transformer.h.9.mlp.w1",
|
| 360 |
+
"transformer.h.2.mlp.c_proj",
|
| 361 |
+
"transformer.h.22.attn.c_proj",
|
| 362 |
+
"transformer.h.25.mlp.w2",
|
| 363 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
| 364 |
+
"transformer.h.30.attn.c_proj",
|
| 365 |
+
"transformer.h.20.attn.c_proj",
|
| 366 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
| 367 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
| 368 |
+
"transformer.h.3.mlp.w2",
|
| 369 |
+
"transformer.h.19.attn.c_attn",
|
| 370 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
| 371 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
| 372 |
+
"transformer.h.1.attn.c_attn",
|
| 373 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
| 374 |
+
"transformer.h.4.attn.c_proj",
|
| 375 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc"
|
| 376 |
+
],
|
| 377 |
+
"task_type": "CAUSAL_LM",
|
| 378 |
+
"use_dora": false,
|
| 379 |
+
"use_rslora": false
|
| 380 |
+
}
|
checkpoint-2000/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ad26b73dae64b378e089e12f9e766a11bf113c1bd169ba39fd33348dd8d43f6
|
| 3 |
+
size 469105640
|
checkpoint-2000/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2000
|
checkpoint-2000/qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2000/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6f6c02405ec3457460084b0bccc1f52114416050135941d1b86a40847a3901cd
|
| 3 |
+
size 14960
|
checkpoint-2000/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8b8c688657b62198cfea2b0bfe429c988dc9d8749e2d0e57204088b7624fcfb
|
| 3 |
+
size 14960
|
checkpoint-2000/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:836759327c6fc5baec90582cf262c9e057b66ddd65bd799ca61947470534bfd5
|
| 3 |
+
size 14960
|
checkpoint-2000/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a63a9100ca1a6600d9304f9d2a8977a8b49d8a7a30c82ba884c0cce68472ba4b
|
| 3 |
+
size 14960
|
checkpoint-2000/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51900721eac30baaf24efb0aa845d2e4f9b1fb9c462b5a0523edfc3c327d92c0
|
| 3 |
+
size 1064
|
checkpoint-2000/special_tokens_map.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"pad_token": "<|endoftext|>"
|
| 3 |
+
}
|
checkpoint-2000/tokenizer_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {},
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoTokenizer": [
|
| 5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
| 6 |
+
null
|
| 7 |
+
]
|
| 8 |
+
},
|
| 9 |
+
"clean_up_tokenization_spaces": true,
|
| 10 |
+
"model_max_length": 1280,
|
| 11 |
+
"pad_token": "<|endoftext|>",
|
| 12 |
+
"padding_side": "right",
|
| 13 |
+
"tokenizer_class": "QWenTokenizer"
|
| 14 |
+
}
|
checkpoint-2000/trainer_state.json
ADDED
|
@@ -0,0 +1,1433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.3365303718660609,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 2000,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0016826518593303045,
|
| 13 |
+
"grad_norm": 3.75418950341011,
|
| 14 |
+
"learning_rate": 4.9999999999999996e-06,
|
| 15 |
+
"loss": 0.9983,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.003365303718660609,
|
| 20 |
+
"grad_norm": 4.027030925274863,
|
| 21 |
+
"learning_rate": 9.999999999999999e-06,
|
| 22 |
+
"loss": 0.9697,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.005047955577990914,
|
| 27 |
+
"grad_norm": 4.048987349136423,
|
| 28 |
+
"learning_rate": 1.5e-05,
|
| 29 |
+
"loss": 0.9412,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.006730607437321218,
|
| 34 |
+
"grad_norm": 5.720158971431411,
|
| 35 |
+
"learning_rate": 1.9999999999999998e-05,
|
| 36 |
+
"loss": 0.8783,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.008413259296651522,
|
| 41 |
+
"grad_norm": 4.718965032869529,
|
| 42 |
+
"learning_rate": 2.5e-05,
|
| 43 |
+
"loss": 0.8454,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.010095911155981827,
|
| 48 |
+
"grad_norm": 3.5785181087788835,
|
| 49 |
+
"learning_rate": 3e-05,
|
| 50 |
+
"loss": 0.809,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.011778563015312132,
|
| 55 |
+
"grad_norm": 4.11981684712826,
|
| 56 |
+
"learning_rate": 2.9999786123888308e-05,
|
| 57 |
+
"loss": 0.7556,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.013461214874642436,
|
| 62 |
+
"grad_norm": 6.082559649594005,
|
| 63 |
+
"learning_rate": 2.9999144501652298e-05,
|
| 64 |
+
"loss": 0.7613,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.01514386673397274,
|
| 69 |
+
"grad_norm": 1.957553999291205,
|
| 70 |
+
"learning_rate": 2.9998075151588992e-05,
|
| 71 |
+
"loss": 0.7784,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.016826518593303044,
|
| 76 |
+
"grad_norm": 1.6706087540201593,
|
| 77 |
+
"learning_rate": 2.999657810419285e-05,
|
| 78 |
+
"loss": 0.7658,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.01850917045263335,
|
| 83 |
+
"grad_norm": 2.909734954037323,
|
| 84 |
+
"learning_rate": 2.999465340215489e-05,
|
| 85 |
+
"loss": 0.7331,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.020191822311963654,
|
| 90 |
+
"grad_norm": 1.977272298268717,
|
| 91 |
+
"learning_rate": 2.999230110036149e-05,
|
| 92 |
+
"loss": 0.7507,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.02187447417129396,
|
| 97 |
+
"grad_norm": 1.8089524113272115,
|
| 98 |
+
"learning_rate": 2.99895212658928e-05,
|
| 99 |
+
"loss": 0.7309,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.023557126030624265,
|
| 104 |
+
"grad_norm": 2.134962179309057,
|
| 105 |
+
"learning_rate": 2.9986313978020846e-05,
|
| 106 |
+
"loss": 0.721,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.02523977788995457,
|
| 111 |
+
"grad_norm": 11.10353091330302,
|
| 112 |
+
"learning_rate": 2.9982679328207262e-05,
|
| 113 |
+
"loss": 0.7338,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.02692242974928487,
|
| 118 |
+
"grad_norm": 1.4444344817739057,
|
| 119 |
+
"learning_rate": 2.9978617420100692e-05,
|
| 120 |
+
"loss": 0.7227,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.028605081608615177,
|
| 125 |
+
"grad_norm": 1.453288161439029,
|
| 126 |
+
"learning_rate": 2.9974128369533805e-05,
|
| 127 |
+
"loss": 0.7107,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.03028773346794548,
|
| 132 |
+
"grad_norm": 3.475164856876678,
|
| 133 |
+
"learning_rate": 2.9969212304520034e-05,
|
| 134 |
+
"loss": 0.7303,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.03197038532727579,
|
| 139 |
+
"grad_norm": 1.1636824531496957,
|
| 140 |
+
"learning_rate": 2.9963869365249895e-05,
|
| 141 |
+
"loss": 0.6688,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.03365303718660609,
|
| 146 |
+
"grad_norm": 1.8518695174363622,
|
| 147 |
+
"learning_rate": 2.995809970408699e-05,
|
| 148 |
+
"loss": 0.7003,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.0353356890459364,
|
| 153 |
+
"grad_norm": 4.09791760479377,
|
| 154 |
+
"learning_rate": 2.9951903485563685e-05,
|
| 155 |
+
"loss": 0.7442,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.0370183409052667,
|
| 160 |
+
"grad_norm": 2.4987929291159956,
|
| 161 |
+
"learning_rate": 2.99452808863764e-05,
|
| 162 |
+
"loss": 0.7517,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.03870099276459701,
|
| 167 |
+
"grad_norm": 3.4584802037194087,
|
| 168 |
+
"learning_rate": 2.993823209538056e-05,
|
| 169 |
+
"loss": 0.7537,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.04038364462392731,
|
| 174 |
+
"grad_norm": 2.511130636368107,
|
| 175 |
+
"learning_rate": 2.9930757313585238e-05,
|
| 176 |
+
"loss": 0.7599,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.04206629648325761,
|
| 181 |
+
"grad_norm": 1.7030446444812277,
|
| 182 |
+
"learning_rate": 2.9922856754147406e-05,
|
| 183 |
+
"loss": 0.7126,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.04374894834258792,
|
| 188 |
+
"grad_norm": 4.790377413030976,
|
| 189 |
+
"learning_rate": 2.9914530642365852e-05,
|
| 190 |
+
"loss": 0.72,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.04543160020191822,
|
| 195 |
+
"grad_norm": 2.0321244924961976,
|
| 196 |
+
"learning_rate": 2.990577921567476e-05,
|
| 197 |
+
"loss": 0.6733,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.04711425206124853,
|
| 202 |
+
"grad_norm": 2.310370624749643,
|
| 203 |
+
"learning_rate": 2.989660272363696e-05,
|
| 204 |
+
"loss": 0.7212,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.04879690392057883,
|
| 209 |
+
"grad_norm": 3.451763592410144,
|
| 210 |
+
"learning_rate": 2.988700142793676e-05,
|
| 211 |
+
"loss": 0.7237,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.05047955577990914,
|
| 216 |
+
"grad_norm": 5.317302731978485,
|
| 217 |
+
"learning_rate": 2.9876975602372536e-05,
|
| 218 |
+
"loss": 0.7558,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.05216220763923944,
|
| 223 |
+
"grad_norm": 2.3026448136142914,
|
| 224 |
+
"learning_rate": 2.9866525532848906e-05,
|
| 225 |
+
"loss": 0.6985,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.05384485949856974,
|
| 230 |
+
"grad_norm": 1.8320545447196381,
|
| 231 |
+
"learning_rate": 2.9855651517368567e-05,
|
| 232 |
+
"loss": 0.7227,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.05552751135790005,
|
| 237 |
+
"grad_norm": 1.9908218789466392,
|
| 238 |
+
"learning_rate": 2.9844353866023802e-05,
|
| 239 |
+
"loss": 0.7075,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.05721016321723035,
|
| 244 |
+
"grad_norm": 5.182840115712529,
|
| 245 |
+
"learning_rate": 2.9832632900987642e-05,
|
| 246 |
+
"loss": 0.7207,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.05889281507656066,
|
| 251 |
+
"grad_norm": 1.5483797249278837,
|
| 252 |
+
"learning_rate": 2.982048895650468e-05,
|
| 253 |
+
"loss": 0.7233,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.06057546693589096,
|
| 258 |
+
"grad_norm": 2.3382590504722693,
|
| 259 |
+
"learning_rate": 2.9807922378881537e-05,
|
| 260 |
+
"loss": 0.7002,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.06225811879522127,
|
| 265 |
+
"grad_norm": 3.1859655239636937,
|
| 266 |
+
"learning_rate": 2.979493352647697e-05,
|
| 267 |
+
"loss": 0.7201,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.06394077065455157,
|
| 272 |
+
"grad_norm": 0.9149159742557087,
|
| 273 |
+
"learning_rate": 2.9781522769691686e-05,
|
| 274 |
+
"loss": 0.7136,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.06562342251388188,
|
| 279 |
+
"grad_norm": 10.861566072795899,
|
| 280 |
+
"learning_rate": 2.9767690490957758e-05,
|
| 281 |
+
"loss": 0.7068,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.06730607437321218,
|
| 286 |
+
"grad_norm": 2.8618866775651006,
|
| 287 |
+
"learning_rate": 2.9753437084727713e-05,
|
| 288 |
+
"loss": 0.7239,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.06898872623254249,
|
| 293 |
+
"grad_norm": 2.8726068570785097,
|
| 294 |
+
"learning_rate": 2.9738762957463292e-05,
|
| 295 |
+
"loss": 0.7245,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.0706713780918728,
|
| 300 |
+
"grad_norm": 2.4481298042739112,
|
| 301 |
+
"learning_rate": 2.9723668527623877e-05,
|
| 302 |
+
"loss": 0.7752,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.0723540299512031,
|
| 307 |
+
"grad_norm": 1.8599931346602536,
|
| 308 |
+
"learning_rate": 2.9708154225654526e-05,
|
| 309 |
+
"loss": 0.7323,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.0740366818105334,
|
| 314 |
+
"grad_norm": 1.2855737813743626,
|
| 315 |
+
"learning_rate": 2.9692220493973712e-05,
|
| 316 |
+
"loss": 0.7037,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.0757193336698637,
|
| 321 |
+
"grad_norm": 4.629091463528233,
|
| 322 |
+
"learning_rate": 2.9675867786960718e-05,
|
| 323 |
+
"loss": 0.6867,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.07740198552919401,
|
| 328 |
+
"grad_norm": 6.294427059845777,
|
| 329 |
+
"learning_rate": 2.9659096570942654e-05,
|
| 330 |
+
"loss": 0.7272,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.07908463738852431,
|
| 335 |
+
"grad_norm": 2.4758348810051345,
|
| 336 |
+
"learning_rate": 2.9641907324181194e-05,
|
| 337 |
+
"loss": 0.6779,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.08076728924785462,
|
| 342 |
+
"grad_norm": 1.3455245255212915,
|
| 343 |
+
"learning_rate": 2.96243005368589e-05,
|
| 344 |
+
"loss": 0.7051,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.08244994110718493,
|
| 349 |
+
"grad_norm": 4.796150475871981,
|
| 350 |
+
"learning_rate": 2.960627671106527e-05,
|
| 351 |
+
"loss": 0.7547,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.08413259296651522,
|
| 356 |
+
"grad_norm": 2.684441445075641,
|
| 357 |
+
"learning_rate": 2.9587836360782405e-05,
|
| 358 |
+
"loss": 0.709,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.08581524482584553,
|
| 363 |
+
"grad_norm": 1.3869329152815553,
|
| 364 |
+
"learning_rate": 2.9568980011870357e-05,
|
| 365 |
+
"loss": 0.7073,
|
| 366 |
+
"step": 510
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.08749789668517584,
|
| 370 |
+
"grad_norm": 2.5576974478207197,
|
| 371 |
+
"learning_rate": 2.954970820205214e-05,
|
| 372 |
+
"loss": 0.6918,
|
| 373 |
+
"step": 520
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.08918054854450615,
|
| 377 |
+
"grad_norm": 1.1525450967004647,
|
| 378 |
+
"learning_rate": 2.9530021480898393e-05,
|
| 379 |
+
"loss": 0.6698,
|
| 380 |
+
"step": 530
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.09086320040383644,
|
| 384 |
+
"grad_norm": 2.847083851829901,
|
| 385 |
+
"learning_rate": 2.9509920409811696e-05,
|
| 386 |
+
"loss": 0.671,
|
| 387 |
+
"step": 540
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.09254585226316675,
|
| 391 |
+
"grad_norm": 2.561042091789346,
|
| 392 |
+
"learning_rate": 2.9489405562010565e-05,
|
| 393 |
+
"loss": 0.75,
|
| 394 |
+
"step": 550
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.09422850412249706,
|
| 398 |
+
"grad_norm": 4.458337350053255,
|
| 399 |
+
"learning_rate": 2.9468477522513132e-05,
|
| 400 |
+
"loss": 0.7277,
|
| 401 |
+
"step": 560
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.09591115598182735,
|
| 405 |
+
"grad_norm": 3.114622509219852,
|
| 406 |
+
"learning_rate": 2.9447136888120408e-05,
|
| 407 |
+
"loss": 0.6967,
|
| 408 |
+
"step": 570
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.09759380784115766,
|
| 412 |
+
"grad_norm": 1.6295210229360877,
|
| 413 |
+
"learning_rate": 2.9425384267399327e-05,
|
| 414 |
+
"loss": 0.6867,
|
| 415 |
+
"step": 580
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.09927645970048797,
|
| 419 |
+
"grad_norm": 1.7579117810504754,
|
| 420 |
+
"learning_rate": 2.940322028066534e-05,
|
| 421 |
+
"loss": 0.7236,
|
| 422 |
+
"step": 590
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.10095911155981828,
|
| 426 |
+
"grad_norm": 1.788183804411441,
|
| 427 |
+
"learning_rate": 2.938064555996476e-05,
|
| 428 |
+
"loss": 0.6864,
|
| 429 |
+
"step": 600
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.10264176341914857,
|
| 433 |
+
"grad_norm": 2.8340511721646373,
|
| 434 |
+
"learning_rate": 2.9357660749056713e-05,
|
| 435 |
+
"loss": 0.6847,
|
| 436 |
+
"step": 610
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.10432441527847888,
|
| 440 |
+
"grad_norm": 2.5230840193297985,
|
| 441 |
+
"learning_rate": 2.9334266503394803e-05,
|
| 442 |
+
"loss": 0.6889,
|
| 443 |
+
"step": 620
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.10600706713780919,
|
| 447 |
+
"grad_norm": 7.346086885083334,
|
| 448 |
+
"learning_rate": 2.9310463490108397e-05,
|
| 449 |
+
"loss": 0.7419,
|
| 450 |
+
"step": 630
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.10768971899713949,
|
| 454 |
+
"grad_norm": 2.356832890545339,
|
| 455 |
+
"learning_rate": 2.928625238798362e-05,
|
| 456 |
+
"loss": 0.7369,
|
| 457 |
+
"step": 640
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.1093723708564698,
|
| 461 |
+
"grad_norm": 2.4978380391841095,
|
| 462 |
+
"learning_rate": 2.9261633887443993e-05,
|
| 463 |
+
"loss": 0.6948,
|
| 464 |
+
"step": 650
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.1110550227158001,
|
| 468 |
+
"grad_norm": 3.535487375505793,
|
| 469 |
+
"learning_rate": 2.9236608690530738e-05,
|
| 470 |
+
"loss": 0.7081,
|
| 471 |
+
"step": 660
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.11273767457513041,
|
| 475 |
+
"grad_norm": 2.522638625540884,
|
| 476 |
+
"learning_rate": 2.921117751088276e-05,
|
| 477 |
+
"loss": 0.7191,
|
| 478 |
+
"step": 670
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.1144203264344607,
|
| 482 |
+
"grad_norm": 3.055823541699581,
|
| 483 |
+
"learning_rate": 2.91853410737163e-05,
|
| 484 |
+
"loss": 0.74,
|
| 485 |
+
"step": 680
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.11610297829379101,
|
| 489 |
+
"grad_norm": 3.270117047516123,
|
| 490 |
+
"learning_rate": 2.915910011580426e-05,
|
| 491 |
+
"loss": 0.6829,
|
| 492 |
+
"step": 690
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.11778563015312132,
|
| 496 |
+
"grad_norm": 2.3219806056695367,
|
| 497 |
+
"learning_rate": 2.9132455385455176e-05,
|
| 498 |
+
"loss": 0.7062,
|
| 499 |
+
"step": 700
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.11946828201245162,
|
| 503 |
+
"grad_norm": 1.541921603113568,
|
| 504 |
+
"learning_rate": 2.9105407642491895e-05,
|
| 505 |
+
"loss": 0.7217,
|
| 506 |
+
"step": 710
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.12115093387178193,
|
| 510 |
+
"grad_norm": 1.557595298876376,
|
| 511 |
+
"learning_rate": 2.907795765822989e-05,
|
| 512 |
+
"loss": 0.7083,
|
| 513 |
+
"step": 720
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.12283358573111224,
|
| 517 |
+
"grad_norm": 2.3829156571868753,
|
| 518 |
+
"learning_rate": 2.9050106215455283e-05,
|
| 519 |
+
"loss": 0.6992,
|
| 520 |
+
"step": 730
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.12451623759044254,
|
| 524 |
+
"grad_norm": 7.536777098548366,
|
| 525 |
+
"learning_rate": 2.9021854108402516e-05,
|
| 526 |
+
"loss": 0.7248,
|
| 527 |
+
"step": 740
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.12619888944977284,
|
| 531 |
+
"grad_norm": 1.3408030642895519,
|
| 532 |
+
"learning_rate": 2.8993202142731693e-05,
|
| 533 |
+
"loss": 0.6375,
|
| 534 |
+
"step": 750
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.12788154130910315,
|
| 538 |
+
"grad_norm": 2.4880776314537254,
|
| 539 |
+
"learning_rate": 2.8964151135505616e-05,
|
| 540 |
+
"loss": 0.7063,
|
| 541 |
+
"step": 760
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.12956419316843346,
|
| 545 |
+
"grad_norm": 1.5507053769862247,
|
| 546 |
+
"learning_rate": 2.8934701915166477e-05,
|
| 547 |
+
"loss": 0.73,
|
| 548 |
+
"step": 770
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.13124684502776376,
|
| 552 |
+
"grad_norm": 3.5622930633942564,
|
| 553 |
+
"learning_rate": 2.890485532151225e-05,
|
| 554 |
+
"loss": 0.7521,
|
| 555 |
+
"step": 780
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.13292949688709407,
|
| 559 |
+
"grad_norm": 4.188153799459233,
|
| 560 |
+
"learning_rate": 2.887461220567271e-05,
|
| 561 |
+
"loss": 0.6841,
|
| 562 |
+
"step": 790
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.13461214874642435,
|
| 566 |
+
"grad_norm": 2.702901312773331,
|
| 567 |
+
"learning_rate": 2.8843973430085204e-05,
|
| 568 |
+
"loss": 0.694,
|
| 569 |
+
"step": 800
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.13629480060575466,
|
| 573 |
+
"grad_norm": 3.8663384632605293,
|
| 574 |
+
"learning_rate": 2.8812939868470016e-05,
|
| 575 |
+
"loss": 0.7376,
|
| 576 |
+
"step": 810
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.13797745246508497,
|
| 580 |
+
"grad_norm": 7.613582881082294,
|
| 581 |
+
"learning_rate": 2.878151240580548e-05,
|
| 582 |
+
"loss": 0.7082,
|
| 583 |
+
"step": 820
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.13966010432441528,
|
| 587 |
+
"grad_norm": 2.8755666754814015,
|
| 588 |
+
"learning_rate": 2.874969193830274e-05,
|
| 589 |
+
"loss": 0.7486,
|
| 590 |
+
"step": 830
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.1413427561837456,
|
| 594 |
+
"grad_norm": 2.049640563529798,
|
| 595 |
+
"learning_rate": 2.871747937338016e-05,
|
| 596 |
+
"loss": 0.7375,
|
| 597 |
+
"step": 840
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.1430254080430759,
|
| 601 |
+
"grad_norm": 3.2253208680917993,
|
| 602 |
+
"learning_rate": 2.8684875629637505e-05,
|
| 603 |
+
"loss": 0.7183,
|
| 604 |
+
"step": 850
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.1447080599024062,
|
| 608 |
+
"grad_norm": 2.0453993741696306,
|
| 609 |
+
"learning_rate": 2.8651881636829698e-05,
|
| 610 |
+
"loss": 0.6953,
|
| 611 |
+
"step": 860
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.1463907117617365,
|
| 615 |
+
"grad_norm": 1.3478445170381042,
|
| 616 |
+
"learning_rate": 2.861849833584032e-05,
|
| 617 |
+
"loss": 0.7205,
|
| 618 |
+
"step": 870
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.1480733636210668,
|
| 622 |
+
"grad_norm": 6.483405424500114,
|
| 623 |
+
"learning_rate": 2.8584726678654787e-05,
|
| 624 |
+
"loss": 0.7331,
|
| 625 |
+
"step": 880
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.1497560154803971,
|
| 629 |
+
"grad_norm": 1.6912080503281164,
|
| 630 |
+
"learning_rate": 2.85505676283332e-05,
|
| 631 |
+
"loss": 0.6985,
|
| 632 |
+
"step": 890
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.1514386673397274,
|
| 636 |
+
"grad_norm": 2.089097733011486,
|
| 637 |
+
"learning_rate": 2.851602215898287e-05,
|
| 638 |
+
"loss": 0.7291,
|
| 639 |
+
"step": 900
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.15312131919905772,
|
| 643 |
+
"grad_norm": 3.3599665631038325,
|
| 644 |
+
"learning_rate": 2.8481091255730552e-05,
|
| 645 |
+
"loss": 0.7125,
|
| 646 |
+
"step": 910
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.15480397105838803,
|
| 650 |
+
"grad_norm": 5.803874517218743,
|
| 651 |
+
"learning_rate": 2.844577591469435e-05,
|
| 652 |
+
"loss": 0.6614,
|
| 653 |
+
"step": 920
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.15648662291771834,
|
| 657 |
+
"grad_norm": 4.180624256153927,
|
| 658 |
+
"learning_rate": 2.8410077142955304e-05,
|
| 659 |
+
"loss": 0.6921,
|
| 660 |
+
"step": 930
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.15816927477704862,
|
| 664 |
+
"grad_norm": 2.51395384445247,
|
| 665 |
+
"learning_rate": 2.8373995958528683e-05,
|
| 666 |
+
"loss": 0.6788,
|
| 667 |
+
"step": 940
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.15985192663637893,
|
| 671 |
+
"grad_norm": 2.0786229734439,
|
| 672 |
+
"learning_rate": 2.8337533390334942e-05,
|
| 673 |
+
"loss": 0.6324,
|
| 674 |
+
"step": 950
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.16153457849570924,
|
| 678 |
+
"grad_norm": 2.1798201763285774,
|
| 679 |
+
"learning_rate": 2.8300690478170388e-05,
|
| 680 |
+
"loss": 0.7128,
|
| 681 |
+
"step": 960
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.16321723035503954,
|
| 685 |
+
"grad_norm": 1.7736042633296192,
|
| 686 |
+
"learning_rate": 2.826346827267753e-05,
|
| 687 |
+
"loss": 0.6854,
|
| 688 |
+
"step": 970
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.16489988221436985,
|
| 692 |
+
"grad_norm": 3.6499571810784377,
|
| 693 |
+
"learning_rate": 2.8225867835315114e-05,
|
| 694 |
+
"loss": 0.7246,
|
| 695 |
+
"step": 980
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.16658253407370016,
|
| 699 |
+
"grad_norm": 8.401076529411414,
|
| 700 |
+
"learning_rate": 2.8187890238327842e-05,
|
| 701 |
+
"loss": 0.7166,
|
| 702 |
+
"step": 990
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.16826518593303044,
|
| 706 |
+
"grad_norm": 1.6815155727131568,
|
| 707 |
+
"learning_rate": 2.814953656471583e-05,
|
| 708 |
+
"loss": 0.6962,
|
| 709 |
+
"step": 1000
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.16994783779236075,
|
| 713 |
+
"grad_norm": 3.59100648398944,
|
| 714 |
+
"learning_rate": 2.8110807908203682e-05,
|
| 715 |
+
"loss": 0.7271,
|
| 716 |
+
"step": 1010
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.17163048965169106,
|
| 720 |
+
"grad_norm": 2.9612400836384034,
|
| 721 |
+
"learning_rate": 2.8071705373209328e-05,
|
| 722 |
+
"loss": 0.7048,
|
| 723 |
+
"step": 1020
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.17331314151102137,
|
| 727 |
+
"grad_norm": 1.6314524411685434,
|
| 728 |
+
"learning_rate": 2.803223007481252e-05,
|
| 729 |
+
"loss": 0.7237,
|
| 730 |
+
"step": 1030
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.17499579337035168,
|
| 734 |
+
"grad_norm": 4.046292885407821,
|
| 735 |
+
"learning_rate": 2.7992383138723034e-05,
|
| 736 |
+
"loss": 0.7066,
|
| 737 |
+
"step": 1040
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.17667844522968199,
|
| 741 |
+
"grad_norm": 3.4626891652569665,
|
| 742 |
+
"learning_rate": 2.7952165701248573e-05,
|
| 743 |
+
"loss": 0.7537,
|
| 744 |
+
"step": 1050
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.1783610970890123,
|
| 748 |
+
"grad_norm": 4.129895397644279,
|
| 749 |
+
"learning_rate": 2.7911578909262353e-05,
|
| 750 |
+
"loss": 0.7348,
|
| 751 |
+
"step": 1060
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.18004374894834257,
|
| 755 |
+
"grad_norm": 2.1894044487856847,
|
| 756 |
+
"learning_rate": 2.787062392017041e-05,
|
| 757 |
+
"loss": 0.7145,
|
| 758 |
+
"step": 1070
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.18172640080767288,
|
| 762 |
+
"grad_norm": 2.988495224416439,
|
| 763 |
+
"learning_rate": 2.7829301901878592e-05,
|
| 764 |
+
"loss": 0.7091,
|
| 765 |
+
"step": 1080
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.1834090526670032,
|
| 769 |
+
"grad_norm": 2.493227176786327,
|
| 770 |
+
"learning_rate": 2.7787614032759243e-05,
|
| 771 |
+
"loss": 0.7427,
|
| 772 |
+
"step": 1090
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.1850917045263335,
|
| 776 |
+
"grad_norm": 2.9382266505350723,
|
| 777 |
+
"learning_rate": 2.7745561501617605e-05,
|
| 778 |
+
"loss": 0.7081,
|
| 779 |
+
"step": 1100
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.1867743563856638,
|
| 783 |
+
"grad_norm": 1.9294251174769146,
|
| 784 |
+
"learning_rate": 2.7703145507657923e-05,
|
| 785 |
+
"loss": 0.679,
|
| 786 |
+
"step": 1110
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.18845700824499412,
|
| 790 |
+
"grad_norm": 7.011830550553666,
|
| 791 |
+
"learning_rate": 2.766036726044926e-05,
|
| 792 |
+
"loss": 0.6962,
|
| 793 |
+
"step": 1120
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.19013966010432443,
|
| 797 |
+
"grad_norm": 1.8058177496791177,
|
| 798 |
+
"learning_rate": 2.7617227979890957e-05,
|
| 799 |
+
"loss": 0.6953,
|
| 800 |
+
"step": 1130
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.1918223119636547,
|
| 804 |
+
"grad_norm": 2.2546595962288727,
|
| 805 |
+
"learning_rate": 2.7573728896177897e-05,
|
| 806 |
+
"loss": 0.6853,
|
| 807 |
+
"step": 1140
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.19350496382298502,
|
| 811 |
+
"grad_norm": 1.7701647300358836,
|
| 812 |
+
"learning_rate": 2.7529871249765397e-05,
|
| 813 |
+
"loss": 0.737,
|
| 814 |
+
"step": 1150
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.19518761568231532,
|
| 818 |
+
"grad_norm": 3.2767535691041396,
|
| 819 |
+
"learning_rate": 2.7485656291333845e-05,
|
| 820 |
+
"loss": 0.6878,
|
| 821 |
+
"step": 1160
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.19687026754164563,
|
| 825 |
+
"grad_norm": 1.231100350207441,
|
| 826 |
+
"learning_rate": 2.7441085281753028e-05,
|
| 827 |
+
"loss": 0.7044,
|
| 828 |
+
"step": 1170
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.19855291940097594,
|
| 832 |
+
"grad_norm": 5.103379397758491,
|
| 833 |
+
"learning_rate": 2.739615949204617e-05,
|
| 834 |
+
"loss": 0.7028,
|
| 835 |
+
"step": 1180
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.20023557126030625,
|
| 839 |
+
"grad_norm": 1.745258105735824,
|
| 840 |
+
"learning_rate": 2.7350880203353703e-05,
|
| 841 |
+
"loss": 0.7123,
|
| 842 |
+
"step": 1190
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.20191822311963656,
|
| 846 |
+
"grad_norm": 2.528898960464809,
|
| 847 |
+
"learning_rate": 2.7305248706896722e-05,
|
| 848 |
+
"loss": 0.7242,
|
| 849 |
+
"step": 1200
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.20360087497896684,
|
| 853 |
+
"grad_norm": 1.329326803950539,
|
| 854 |
+
"learning_rate": 2.7259266303940164e-05,
|
| 855 |
+
"loss": 0.7315,
|
| 856 |
+
"step": 1210
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.20528352683829715,
|
| 860 |
+
"grad_norm": 3.523954433912976,
|
| 861 |
+
"learning_rate": 2.7212934305755697e-05,
|
| 862 |
+
"loss": 0.7022,
|
| 863 |
+
"step": 1220
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.20696617869762746,
|
| 867 |
+
"grad_norm": 1.3845861665687345,
|
| 868 |
+
"learning_rate": 2.7166254033584343e-05,
|
| 869 |
+
"loss": 0.6788,
|
| 870 |
+
"step": 1230
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.20864883055695777,
|
| 874 |
+
"grad_norm": 1.6893702845026013,
|
| 875 |
+
"learning_rate": 2.7119226818598784e-05,
|
| 876 |
+
"loss": 0.7083,
|
| 877 |
+
"step": 1240
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.21033148241628807,
|
| 881 |
+
"grad_norm": 3.481606379952265,
|
| 882 |
+
"learning_rate": 2.7071854001865402e-05,
|
| 883 |
+
"loss": 0.7104,
|
| 884 |
+
"step": 1250
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.21201413427561838,
|
| 888 |
+
"grad_norm": 1.3880604016054,
|
| 889 |
+
"learning_rate": 2.702413693430604e-05,
|
| 890 |
+
"loss": 0.7192,
|
| 891 |
+
"step": 1260
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.2136967861349487,
|
| 895 |
+
"grad_norm": 2.7420634271532625,
|
| 896 |
+
"learning_rate": 2.697607697665948e-05,
|
| 897 |
+
"loss": 0.7329,
|
| 898 |
+
"step": 1270
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.21537943799427897,
|
| 902 |
+
"grad_norm": 1.3383701328350484,
|
| 903 |
+
"learning_rate": 2.6927675499442648e-05,
|
| 904 |
+
"loss": 0.7523,
|
| 905 |
+
"step": 1280
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.21706208985360928,
|
| 909 |
+
"grad_norm": 5.63600709352392,
|
| 910 |
+
"learning_rate": 2.68789338829115e-05,
|
| 911 |
+
"loss": 0.6938,
|
| 912 |
+
"step": 1290
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.2187447417129396,
|
| 916 |
+
"grad_norm": 1.973997298554772,
|
| 917 |
+
"learning_rate": 2.6829853517021698e-05,
|
| 918 |
+
"loss": 0.7024,
|
| 919 |
+
"step": 1300
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.2204273935722699,
|
| 923 |
+
"grad_norm": 5.331233664305369,
|
| 924 |
+
"learning_rate": 2.6780435801388945e-05,
|
| 925 |
+
"loss": 0.6978,
|
| 926 |
+
"step": 1310
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.2221100454316002,
|
| 930 |
+
"grad_norm": 14.545018258920948,
|
| 931 |
+
"learning_rate": 2.6730682145249093e-05,
|
| 932 |
+
"loss": 0.7288,
|
| 933 |
+
"step": 1320
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.22379269729093051,
|
| 937 |
+
"grad_norm": 2.772459303589031,
|
| 938 |
+
"learning_rate": 2.668059396741795e-05,
|
| 939 |
+
"loss": 0.69,
|
| 940 |
+
"step": 1330
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.22547534915026082,
|
| 944 |
+
"grad_norm": 1.9806140492727284,
|
| 945 |
+
"learning_rate": 2.6630172696250804e-05,
|
| 946 |
+
"loss": 0.7194,
|
| 947 |
+
"step": 1340
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.2271580010095911,
|
| 951 |
+
"grad_norm": 2.5305067313330305,
|
| 952 |
+
"learning_rate": 2.6579419769601715e-05,
|
| 953 |
+
"loss": 0.7209,
|
| 954 |
+
"step": 1350
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.2288406528689214,
|
| 958 |
+
"grad_norm": 4.329479239778255,
|
| 959 |
+
"learning_rate": 2.6528336634782493e-05,
|
| 960 |
+
"loss": 0.7263,
|
| 961 |
+
"step": 1360
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.23052330472825172,
|
| 965 |
+
"grad_norm": 2.4385930080514124,
|
| 966 |
+
"learning_rate": 2.6476924748521443e-05,
|
| 967 |
+
"loss": 0.7169,
|
| 968 |
+
"step": 1370
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.23220595658758203,
|
| 972 |
+
"grad_norm": 4.486791723774815,
|
| 973 |
+
"learning_rate": 2.6425185576921812e-05,
|
| 974 |
+
"loss": 0.6791,
|
| 975 |
+
"step": 1380
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.23388860844691234,
|
| 979 |
+
"grad_norm": 2.1648975510177353,
|
| 980 |
+
"learning_rate": 2.637312059541997e-05,
|
| 981 |
+
"loss": 0.722,
|
| 982 |
+
"step": 1390
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.23557126030624265,
|
| 986 |
+
"grad_norm": 2.497984836932449,
|
| 987 |
+
"learning_rate": 2.632073128874336e-05,
|
| 988 |
+
"loss": 0.737,
|
| 989 |
+
"step": 1400
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.23725391216557296,
|
| 993 |
+
"grad_norm": 1.6911389710154248,
|
| 994 |
+
"learning_rate": 2.6268019150868144e-05,
|
| 995 |
+
"loss": 0.7027,
|
| 996 |
+
"step": 1410
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.23893656402490324,
|
| 1000 |
+
"grad_norm": 5.094854691429602,
|
| 1001 |
+
"learning_rate": 2.62149856849766e-05,
|
| 1002 |
+
"loss": 0.7431,
|
| 1003 |
+
"step": 1420
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.24061921588423354,
|
| 1007 |
+
"grad_norm": 1.6056704058079299,
|
| 1008 |
+
"learning_rate": 2.616163240341426e-05,
|
| 1009 |
+
"loss": 0.7215,
|
| 1010 |
+
"step": 1430
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.24230186774356385,
|
| 1014 |
+
"grad_norm": 2.0440590394408793,
|
| 1015 |
+
"learning_rate": 2.6107960827646774e-05,
|
| 1016 |
+
"loss": 0.6864,
|
| 1017 |
+
"step": 1440
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.24398451960289416,
|
| 1021 |
+
"grad_norm": 1.4019933491248435,
|
| 1022 |
+
"learning_rate": 2.6053972488216538e-05,
|
| 1023 |
+
"loss": 0.7007,
|
| 1024 |
+
"step": 1450
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.24566717146222447,
|
| 1028 |
+
"grad_norm": 6.4772716175425185,
|
| 1029 |
+
"learning_rate": 2.5999668924699035e-05,
|
| 1030 |
+
"loss": 0.6963,
|
| 1031 |
+
"step": 1460
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.24734982332155478,
|
| 1035 |
+
"grad_norm": 1.235157923543473,
|
| 1036 |
+
"learning_rate": 2.5945051685658923e-05,
|
| 1037 |
+
"loss": 0.7158,
|
| 1038 |
+
"step": 1470
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.2490324751808851,
|
| 1042 |
+
"grad_norm": 1.6576585358395288,
|
| 1043 |
+
"learning_rate": 2.5890122328605908e-05,
|
| 1044 |
+
"loss": 0.6918,
|
| 1045 |
+
"step": 1480
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.25071512704021537,
|
| 1049 |
+
"grad_norm": 2.6005430314710645,
|
| 1050 |
+
"learning_rate": 2.5834882419950295e-05,
|
| 1051 |
+
"loss": 0.6666,
|
| 1052 |
+
"step": 1490
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.2523977788995457,
|
| 1056 |
+
"grad_norm": 3.83061566974576,
|
| 1057 |
+
"learning_rate": 2.577933353495833e-05,
|
| 1058 |
+
"loss": 0.724,
|
| 1059 |
+
"step": 1500
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.254080430758876,
|
| 1063 |
+
"grad_norm": 2.259260300802235,
|
| 1064 |
+
"learning_rate": 2.5723477257707293e-05,
|
| 1065 |
+
"loss": 0.725,
|
| 1066 |
+
"step": 1510
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.2557630826182063,
|
| 1070 |
+
"grad_norm": 3.1023391020410283,
|
| 1071 |
+
"learning_rate": 2.566731518104029e-05,
|
| 1072 |
+
"loss": 0.709,
|
| 1073 |
+
"step": 1520
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.2574457344775366,
|
| 1077 |
+
"grad_norm": 2.375072076607274,
|
| 1078 |
+
"learning_rate": 2.5610848906520878e-05,
|
| 1079 |
+
"loss": 0.7031,
|
| 1080 |
+
"step": 1530
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.2591283863368669,
|
| 1084 |
+
"grad_norm": 1.638162563319741,
|
| 1085 |
+
"learning_rate": 2.5554080044387344e-05,
|
| 1086 |
+
"loss": 0.7031,
|
| 1087 |
+
"step": 1540
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 0.2608110381961972,
|
| 1091 |
+
"grad_norm": 8.846026339935685,
|
| 1092 |
+
"learning_rate": 2.5497010213506825e-05,
|
| 1093 |
+
"loss": 0.7119,
|
| 1094 |
+
"step": 1550
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.26249369005552753,
|
| 1098 |
+
"grad_norm": 4.589496329936434,
|
| 1099 |
+
"learning_rate": 2.5439641041329128e-05,
|
| 1100 |
+
"loss": 0.7043,
|
| 1101 |
+
"step": 1560
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.26417634191485784,
|
| 1105 |
+
"grad_norm": 0.9945782670551377,
|
| 1106 |
+
"learning_rate": 2.5381974163840313e-05,
|
| 1107 |
+
"loss": 0.7026,
|
| 1108 |
+
"step": 1570
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.26585899377418815,
|
| 1112 |
+
"grad_norm": 2.341138070970226,
|
| 1113 |
+
"learning_rate": 2.532401122551605e-05,
|
| 1114 |
+
"loss": 0.744,
|
| 1115 |
+
"step": 1580
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 0.2675416456335184,
|
| 1119 |
+
"grad_norm": 3.446122331658564,
|
| 1120 |
+
"learning_rate": 2.526575387927473e-05,
|
| 1121 |
+
"loss": 0.6861,
|
| 1122 |
+
"step": 1590
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.2692242974928487,
|
| 1126 |
+
"grad_norm": 4.165637435951758,
|
| 1127 |
+
"learning_rate": 2.52072037864303e-05,
|
| 1128 |
+
"loss": 0.7065,
|
| 1129 |
+
"step": 1600
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 0.270906949352179,
|
| 1133 |
+
"grad_norm": 2.156163863520989,
|
| 1134 |
+
"learning_rate": 2.5148362616644926e-05,
|
| 1135 |
+
"loss": 0.7383,
|
| 1136 |
+
"step": 1610
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 0.2725896012115093,
|
| 1140 |
+
"grad_norm": 1.489844754983356,
|
| 1141 |
+
"learning_rate": 2.508923204788135e-05,
|
| 1142 |
+
"loss": 0.7061,
|
| 1143 |
+
"step": 1620
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.27427225307083963,
|
| 1147 |
+
"grad_norm": 1.330475018363876,
|
| 1148 |
+
"learning_rate": 2.5029813766355062e-05,
|
| 1149 |
+
"loss": 0.6916,
|
| 1150 |
+
"step": 1630
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 0.27595490493016994,
|
| 1154 |
+
"grad_norm": 1.5166804777641398,
|
| 1155 |
+
"learning_rate": 2.4970109466486202e-05,
|
| 1156 |
+
"loss": 0.6998,
|
| 1157 |
+
"step": 1640
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 0.27763755678950025,
|
| 1161 |
+
"grad_norm": 1.1006885605957994,
|
| 1162 |
+
"learning_rate": 2.491012085085122e-05,
|
| 1163 |
+
"loss": 0.7095,
|
| 1164 |
+
"step": 1650
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 0.27932020864883056,
|
| 1168 |
+
"grad_norm": 3.137721907226618,
|
| 1169 |
+
"learning_rate": 2.4849849630134384e-05,
|
| 1170 |
+
"loss": 0.7204,
|
| 1171 |
+
"step": 1660
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 0.28100286050816087,
|
| 1175 |
+
"grad_norm": 2.0954950376873747,
|
| 1176 |
+
"learning_rate": 2.4789297523078924e-05,
|
| 1177 |
+
"loss": 0.7149,
|
| 1178 |
+
"step": 1670
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.2826855123674912,
|
| 1182 |
+
"grad_norm": 1.59599915913629,
|
| 1183 |
+
"learning_rate": 2.4728466256438072e-05,
|
| 1184 |
+
"loss": 0.7052,
|
| 1185 |
+
"step": 1680
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.2843681642268215,
|
| 1189 |
+
"grad_norm": 8.944835293630385,
|
| 1190 |
+
"learning_rate": 2.4667357564925798e-05,
|
| 1191 |
+
"loss": 0.7161,
|
| 1192 |
+
"step": 1690
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.2860508160861518,
|
| 1196 |
+
"grad_norm": 6.306096521027849,
|
| 1197 |
+
"learning_rate": 2.460597319116735e-05,
|
| 1198 |
+
"loss": 0.7219,
|
| 1199 |
+
"step": 1700
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 0.2877334679454821,
|
| 1203 |
+
"grad_norm": 8.531648843126508,
|
| 1204 |
+
"learning_rate": 2.4544314885649552e-05,
|
| 1205 |
+
"loss": 0.7195,
|
| 1206 |
+
"step": 1710
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 0.2894161198048124,
|
| 1210 |
+
"grad_norm": 6.214651933223859,
|
| 1211 |
+
"learning_rate": 2.4482384406670883e-05,
|
| 1212 |
+
"loss": 0.6836,
|
| 1213 |
+
"step": 1720
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"epoch": 0.29109877166414266,
|
| 1217 |
+
"grad_norm": 3.495702421141607,
|
| 1218 |
+
"learning_rate": 2.4420183520291354e-05,
|
| 1219 |
+
"loss": 0.7241,
|
| 1220 |
+
"step": 1730
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 0.292781423523473,
|
| 1224 |
+
"grad_norm": 7.473552612209333,
|
| 1225 |
+
"learning_rate": 2.4357714000282127e-05,
|
| 1226 |
+
"loss": 0.6664,
|
| 1227 |
+
"step": 1740
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 0.2944640753828033,
|
| 1231 |
+
"grad_norm": 2.528030042904385,
|
| 1232 |
+
"learning_rate": 2.4294977628074938e-05,
|
| 1233 |
+
"loss": 0.7415,
|
| 1234 |
+
"step": 1750
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 0.2961467272421336,
|
| 1238 |
+
"grad_norm": 15.300967237030209,
|
| 1239 |
+
"learning_rate": 2.42319761927113e-05,
|
| 1240 |
+
"loss": 0.7336,
|
| 1241 |
+
"step": 1760
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 0.2978293791014639,
|
| 1245 |
+
"grad_norm": 5.5616370399668345,
|
| 1246 |
+
"learning_rate": 2.4168711490791484e-05,
|
| 1247 |
+
"loss": 0.72,
|
| 1248 |
+
"step": 1770
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 0.2995120309607942,
|
| 1252 |
+
"grad_norm": 3.7113016371508993,
|
| 1253 |
+
"learning_rate": 2.4105185326423286e-05,
|
| 1254 |
+
"loss": 0.723,
|
| 1255 |
+
"step": 1780
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"epoch": 0.3011946828201245,
|
| 1259 |
+
"grad_norm": 2.0578017620481397,
|
| 1260 |
+
"learning_rate": 2.4041399511170574e-05,
|
| 1261 |
+
"loss": 0.7008,
|
| 1262 |
+
"step": 1790
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 0.3028773346794548,
|
| 1266 |
+
"grad_norm": 1.5192292607159725,
|
| 1267 |
+
"learning_rate": 2.3977355864001635e-05,
|
| 1268 |
+
"loss": 0.7107,
|
| 1269 |
+
"step": 1800
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.30455998653878513,
|
| 1273 |
+
"grad_norm": 1.4432235055034852,
|
| 1274 |
+
"learning_rate": 2.3913056211237304e-05,
|
| 1275 |
+
"loss": 0.7112,
|
| 1276 |
+
"step": 1810
|
| 1277 |
+
},
|
| 1278 |
+
{
|
| 1279 |
+
"epoch": 0.30624263839811544,
|
| 1280 |
+
"grad_norm": 3.8368406145537577,
|
| 1281 |
+
"learning_rate": 2.3848502386498866e-05,
|
| 1282 |
+
"loss": 0.6875,
|
| 1283 |
+
"step": 1820
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 0.30792529025744575,
|
| 1287 |
+
"grad_norm": 1.7029662451991225,
|
| 1288 |
+
"learning_rate": 2.3783696230655802e-05,
|
| 1289 |
+
"loss": 0.6797,
|
| 1290 |
+
"step": 1830
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.30960794211677606,
|
| 1294 |
+
"grad_norm": 2.340409810623994,
|
| 1295 |
+
"learning_rate": 2.371863959177326e-05,
|
| 1296 |
+
"loss": 0.7211,
|
| 1297 |
+
"step": 1840
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"epoch": 0.31129059397610637,
|
| 1301 |
+
"grad_norm": 8.08876148980577,
|
| 1302 |
+
"learning_rate": 2.365333432505937e-05,
|
| 1303 |
+
"loss": 0.7208,
|
| 1304 |
+
"step": 1850
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 0.3129732458354367,
|
| 1308 |
+
"grad_norm": 3.415957276427778,
|
| 1309 |
+
"learning_rate": 2.3587782292812323e-05,
|
| 1310 |
+
"loss": 0.707,
|
| 1311 |
+
"step": 1860
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 0.31465589769476693,
|
| 1315 |
+
"grad_norm": 1.116630095030083,
|
| 1316 |
+
"learning_rate": 2.35219853643673e-05,
|
| 1317 |
+
"loss": 0.6863,
|
| 1318 |
+
"step": 1870
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"epoch": 0.31633854955409724,
|
| 1322 |
+
"grad_norm": 1.9365729913801322,
|
| 1323 |
+
"learning_rate": 2.3455945416043132e-05,
|
| 1324 |
+
"loss": 0.705,
|
| 1325 |
+
"step": 1880
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 0.31802120141342755,
|
| 1329 |
+
"grad_norm": 1.401982720531144,
|
| 1330 |
+
"learning_rate": 2.338966433108879e-05,
|
| 1331 |
+
"loss": 0.6872,
|
| 1332 |
+
"step": 1890
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 0.31970385327275785,
|
| 1336 |
+
"grad_norm": 1.6958509020945827,
|
| 1337 |
+
"learning_rate": 2.3323143999629712e-05,
|
| 1338 |
+
"loss": 0.7146,
|
| 1339 |
+
"step": 1900
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"epoch": 0.32138650513208816,
|
| 1343 |
+
"grad_norm": 1.6193006043035303,
|
| 1344 |
+
"learning_rate": 2.3256386318613877e-05,
|
| 1345 |
+
"loss": 0.6887,
|
| 1346 |
+
"step": 1910
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 0.32306915699141847,
|
| 1350 |
+
"grad_norm": 12.979287887341894,
|
| 1351 |
+
"learning_rate": 2.318939319175771e-05,
|
| 1352 |
+
"loss": 0.7063,
|
| 1353 |
+
"step": 1920
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.3247518088507488,
|
| 1357 |
+
"grad_norm": 2.053699792676608,
|
| 1358 |
+
"learning_rate": 2.3122166529491822e-05,
|
| 1359 |
+
"loss": 0.7921,
|
| 1360 |
+
"step": 1930
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 0.3264344607100791,
|
| 1364 |
+
"grad_norm": 2.1805832639041993,
|
| 1365 |
+
"learning_rate": 2.3054708248906483e-05,
|
| 1366 |
+
"loss": 0.6892,
|
| 1367 |
+
"step": 1940
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 0.3281171125694094,
|
| 1371 |
+
"grad_norm": 2.627137721499779,
|
| 1372 |
+
"learning_rate": 2.2987020273696996e-05,
|
| 1373 |
+
"loss": 0.6937,
|
| 1374 |
+
"step": 1950
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.3297997644287397,
|
| 1378 |
+
"grad_norm": 3.4422222646515284,
|
| 1379 |
+
"learning_rate": 2.2919104534108825e-05,
|
| 1380 |
+
"loss": 0.7274,
|
| 1381 |
+
"step": 1960
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 0.33148241628807,
|
| 1385 |
+
"grad_norm": 3.942895129812573,
|
| 1386 |
+
"learning_rate": 2.2850962966882547e-05,
|
| 1387 |
+
"loss": 0.7089,
|
| 1388 |
+
"step": 1970
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 0.3331650681474003,
|
| 1392 |
+
"grad_norm": 2.250499246098397,
|
| 1393 |
+
"learning_rate": 2.278259751519861e-05,
|
| 1394 |
+
"loss": 0.7288,
|
| 1395 |
+
"step": 1980
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.33484772000673063,
|
| 1399 |
+
"grad_norm": 1.9217973398784702,
|
| 1400 |
+
"learning_rate": 2.2714010128621957e-05,
|
| 1401 |
+
"loss": 0.6971,
|
| 1402 |
+
"step": 1990
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.3365303718660609,
|
| 1406 |
+
"grad_norm": 7.4365036240913005,
|
| 1407 |
+
"learning_rate": 2.2645202763046385e-05,
|
| 1408 |
+
"loss": 0.7027,
|
| 1409 |
+
"step": 2000
|
| 1410 |
+
}
|
| 1411 |
+
],
|
| 1412 |
+
"logging_steps": 10,
|
| 1413 |
+
"max_steps": 5943,
|
| 1414 |
+
"num_input_tokens_seen": 0,
|
| 1415 |
+
"num_train_epochs": 1,
|
| 1416 |
+
"save_steps": 400,
|
| 1417 |
+
"stateful_callbacks": {
|
| 1418 |
+
"TrainerControl": {
|
| 1419 |
+
"args": {
|
| 1420 |
+
"should_epoch_stop": false,
|
| 1421 |
+
"should_evaluate": false,
|
| 1422 |
+
"should_log": false,
|
| 1423 |
+
"should_save": true,
|
| 1424 |
+
"should_training_stop": false
|
| 1425 |
+
},
|
| 1426 |
+
"attributes": {}
|
| 1427 |
+
}
|
| 1428 |
+
},
|
| 1429 |
+
"total_flos": 9.11190196748288e+18,
|
| 1430 |
+
"train_batch_size": 4,
|
| 1431 |
+
"trial_name": null,
|
| 1432 |
+
"trial_params": null
|
| 1433 |
+
}
|
checkpoint-2000/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fbdba9805bd0d1a205737e79e7c8cc90395bd2d30f5c02b0fe337cbf2b804f7
|
| 3 |
+
size 6520
|
checkpoint-2000/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 252 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 253 |
+
|
| 254 |
+
# Reconstruction protocol:
|
| 255 |
+
#
|
| 256 |
+
# XXX: document this
|
| 257 |
+
|
| 258 |
+
if debug:
|
| 259 |
+
for i in range(world_size):
|
| 260 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 262 |
+
|
| 263 |
+
# XXX: memory usage doubles here (zero2)
|
| 264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 265 |
+
merged_single_partition_of_fp32_groups = []
|
| 266 |
+
for i in range(num_param_groups):
|
| 267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 270 |
+
avail_numel = sum(
|
| 271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 272 |
+
|
| 273 |
+
if debug:
|
| 274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 276 |
+
# not asserting if there is a mismatch due to possible padding
|
| 277 |
+
print(f"Have {avail_numel} numels to process.")
|
| 278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 279 |
+
|
| 280 |
+
# params
|
| 281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 282 |
+
# out-of-core computing solution
|
| 283 |
+
total_numel = 0
|
| 284 |
+
total_params = 0
|
| 285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 286 |
+
offset = 0
|
| 287 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 288 |
+
for name, shape in shapes.items():
|
| 289 |
+
|
| 290 |
+
unpartitioned_numel = shape.numel()
|
| 291 |
+
total_numel += unpartitioned_numel
|
| 292 |
+
total_params += 1
|
| 293 |
+
|
| 294 |
+
if debug:
|
| 295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 297 |
+
offset += unpartitioned_numel
|
| 298 |
+
|
| 299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 303 |
+
align_to = 2 * world_size
|
| 304 |
+
|
| 305 |
+
def zero2_align(x):
|
| 306 |
+
return align_to * math.ceil(x / align_to)
|
| 307 |
+
|
| 308 |
+
if debug:
|
| 309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 310 |
+
|
| 311 |
+
offset = zero2_align(offset)
|
| 312 |
+
avail_numel = zero2_align(avail_numel)
|
| 313 |
+
|
| 314 |
+
if debug:
|
| 315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 316 |
+
|
| 317 |
+
# Sanity check
|
| 318 |
+
if offset != avail_numel:
|
| 319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 320 |
+
|
| 321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 325 |
+
state_dict = OrderedDict()
|
| 326 |
+
|
| 327 |
+
# buffers
|
| 328 |
+
buffers = zero_model_states[0].buffers
|
| 329 |
+
state_dict.update(buffers)
|
| 330 |
+
if debug:
|
| 331 |
+
print(f"added {len(buffers)} buffers")
|
| 332 |
+
|
| 333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 334 |
+
|
| 335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 336 |
+
|
| 337 |
+
# recover shared parameters
|
| 338 |
+
for pair in zero_model_states[0].shared_params:
|
| 339 |
+
if pair[1] in state_dict:
|
| 340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 341 |
+
|
| 342 |
+
return state_dict
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 346 |
+
remainder = unpartitioned_numel % world_size
|
| 347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 349 |
+
return partitioned_numel, padding_numel
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 354 |
+
return
|
| 355 |
+
|
| 356 |
+
if debug:
|
| 357 |
+
for i in range(world_size):
|
| 358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 360 |
+
|
| 361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 362 |
+
wanted_params = len(frozen_param_shapes)
|
| 363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 367 |
+
|
| 368 |
+
total_params = 0
|
| 369 |
+
total_numel = 0
|
| 370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 371 |
+
total_params += 1
|
| 372 |
+
unpartitioned_numel = shape.numel()
|
| 373 |
+
total_numel += unpartitioned_numel
|
| 374 |
+
|
| 375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 377 |
+
|
| 378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 379 |
+
|
| 380 |
+
if debug:
|
| 381 |
+
print(
|
| 382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 389 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 393 |
+
|
| 394 |
+
# merge list of dicts, preserving order
|
| 395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 396 |
+
|
| 397 |
+
if debug:
|
| 398 |
+
for i in range(world_size):
|
| 399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 400 |
+
|
| 401 |
+
wanted_params = len(param_shapes)
|
| 402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 403 |
+
# not asserting if there is a mismatch due to possible padding
|
| 404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 407 |
+
|
| 408 |
+
# params
|
| 409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 410 |
+
# out-of-core computing solution
|
| 411 |
+
offset = 0
|
| 412 |
+
total_numel = 0
|
| 413 |
+
total_params = 0
|
| 414 |
+
for name, shape in param_shapes.items():
|
| 415 |
+
|
| 416 |
+
unpartitioned_numel = shape.numel()
|
| 417 |
+
total_numel += unpartitioned_numel
|
| 418 |
+
total_params += 1
|
| 419 |
+
|
| 420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 421 |
+
|
| 422 |
+
if debug:
|
| 423 |
+
print(
|
| 424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# XXX: memory usage doubles here
|
| 428 |
+
state_dict[name] = torch.cat(
|
| 429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 431 |
+
offset += partitioned_numel
|
| 432 |
+
|
| 433 |
+
offset *= world_size
|
| 434 |
+
|
| 435 |
+
# Sanity check
|
| 436 |
+
if offset != avail_numel:
|
| 437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 438 |
+
|
| 439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 443 |
+
state_dict = OrderedDict()
|
| 444 |
+
|
| 445 |
+
# buffers
|
| 446 |
+
buffers = zero_model_states[0].buffers
|
| 447 |
+
state_dict.update(buffers)
|
| 448 |
+
if debug:
|
| 449 |
+
print(f"added {len(buffers)} buffers")
|
| 450 |
+
|
| 451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 452 |
+
|
| 453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 454 |
+
|
| 455 |
+
# recover shared parameters
|
| 456 |
+
for pair in zero_model_states[0].shared_params:
|
| 457 |
+
if pair[1] in state_dict:
|
| 458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 459 |
+
|
| 460 |
+
return state_dict
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 464 |
+
"""
|
| 465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 467 |
+
via a model hub.
|
| 468 |
+
|
| 469 |
+
Args:
|
| 470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 472 |
+
|
| 473 |
+
Returns:
|
| 474 |
+
- pytorch ``state_dict``
|
| 475 |
+
|
| 476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 478 |
+
the checkpoint.
|
| 479 |
+
|
| 480 |
+
A typical usage might be ::
|
| 481 |
+
|
| 482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 483 |
+
# do the training and checkpoint saving
|
| 484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 485 |
+
model = model.cpu() # move to cpu
|
| 486 |
+
model.load_state_dict(state_dict)
|
| 487 |
+
# submit to model hub or save the model to share with others
|
| 488 |
+
|
| 489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 492 |
+
|
| 493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 494 |
+
|
| 495 |
+
"""
|
| 496 |
+
if tag is None:
|
| 497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 498 |
+
if os.path.isfile(latest_path):
|
| 499 |
+
with open(latest_path, 'r') as fd:
|
| 500 |
+
tag = fd.read().strip()
|
| 501 |
+
else:
|
| 502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 503 |
+
|
| 504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 505 |
+
|
| 506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 508 |
+
|
| 509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 513 |
+
"""
|
| 514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 516 |
+
|
| 517 |
+
Args:
|
| 518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 521 |
+
"""
|
| 522 |
+
|
| 523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 525 |
+
torch.save(state_dict, output_file)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 529 |
+
"""
|
| 530 |
+
1. Put the provided model to cpu
|
| 531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 532 |
+
3. Load it into the provided model
|
| 533 |
+
|
| 534 |
+
Args:
|
| 535 |
+
- ``model``: the model object to update
|
| 536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 538 |
+
|
| 539 |
+
Returns:
|
| 540 |
+
- ``model`: modified model
|
| 541 |
+
|
| 542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 544 |
+
conveniently placed for you in the checkpoint folder.
|
| 545 |
+
|
| 546 |
+
A typical usage might be ::
|
| 547 |
+
|
| 548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 550 |
+
# submit to model hub or save the model to share with others
|
| 551 |
+
|
| 552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 555 |
+
|
| 556 |
+
"""
|
| 557 |
+
logger.info(f"Extracting fp32 weights")
|
| 558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 559 |
+
|
| 560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 561 |
+
model = model.cpu()
|
| 562 |
+
model.load_state_dict(state_dict, strict=False)
|
| 563 |
+
|
| 564 |
+
return model
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
if __name__ == "__main__":
|
| 568 |
+
|
| 569 |
+
parser = argparse.ArgumentParser()
|
| 570 |
+
parser.add_argument("checkpoint_dir",
|
| 571 |
+
type=str,
|
| 572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 573 |
+
parser.add_argument(
|
| 574 |
+
"output_file",
|
| 575 |
+
type=str,
|
| 576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 577 |
+
parser.add_argument("-t",
|
| 578 |
+
"--tag",
|
| 579 |
+
type=str,
|
| 580 |
+
default=None,
|
| 581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 583 |
+
args = parser.parse_args()
|
| 584 |
+
|
| 585 |
+
debug = args.debug
|
| 586 |
+
|
| 587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-2400/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: Qwen/Qwen-VL-Chat
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
checkpoint-2400/adapter_config.json
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 16,
|
| 14 |
+
"lora_dropout": 0.05,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 64,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
| 24 |
+
"transformer.h.11.attn.c_attn",
|
| 25 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
| 26 |
+
"transformer.h.26.mlp.c_proj",
|
| 27 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
| 28 |
+
"transformer.h.20.mlp.c_proj",
|
| 29 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
| 30 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
| 31 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
| 32 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
| 33 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
| 34 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
| 35 |
+
"transformer.h.1.mlp.c_proj",
|
| 36 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
| 37 |
+
"transformer.h.28.attn.c_attn",
|
| 38 |
+
"transformer.h.19.attn.c_proj",
|
| 39 |
+
"transformer.h.29.mlp.c_proj",
|
| 40 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
| 41 |
+
"transformer.h.17.attn.c_attn",
|
| 42 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
| 43 |
+
"transformer.h.16.mlp.c_proj",
|
| 44 |
+
"transformer.h.19.mlp.w2",
|
| 45 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
| 46 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
| 47 |
+
"transformer.h.0.mlp.w2",
|
| 48 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
| 49 |
+
"transformer.h.3.mlp.c_proj",
|
| 50 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
| 51 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
| 52 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
| 53 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
| 54 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
| 55 |
+
"transformer.h.0.mlp.w1",
|
| 56 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
| 57 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
| 58 |
+
"transformer.visual.conv1",
|
| 59 |
+
"transformer.h.22.mlp.w2",
|
| 60 |
+
"transformer.h.21.mlp.w2",
|
| 61 |
+
"transformer.h.13.attn.c_attn",
|
| 62 |
+
"transformer.h.10.mlp.w1",
|
| 63 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
| 64 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
| 65 |
+
"transformer.h.16.mlp.w2",
|
| 66 |
+
"transformer.h.8.attn.c_proj",
|
| 67 |
+
"transformer.h.30.mlp.w1",
|
| 68 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
| 69 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
| 70 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
| 71 |
+
"transformer.h.23.attn.c_proj",
|
| 72 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
| 73 |
+
"transformer.h.25.mlp.c_proj",
|
| 74 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
| 75 |
+
"transformer.h.15.attn.c_attn",
|
| 76 |
+
"transformer.h.2.mlp.w1",
|
| 77 |
+
"transformer.h.4.mlp.w1",
|
| 78 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
| 79 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
| 80 |
+
"transformer.h.30.attn.c_attn",
|
| 81 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
| 82 |
+
"transformer.h.8.mlp.c_proj",
|
| 83 |
+
"transformer.h.8.mlp.w2",
|
| 84 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
| 85 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
| 86 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
| 87 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
| 88 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
| 89 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
| 90 |
+
"transformer.h.8.mlp.w1",
|
| 91 |
+
"transformer.h.31.mlp.w1",
|
| 92 |
+
"transformer.h.4.attn.c_attn",
|
| 93 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
| 94 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
| 95 |
+
"transformer.h.13.attn.c_proj",
|
| 96 |
+
"transformer.h.24.attn.c_attn",
|
| 97 |
+
"transformer.h.27.attn.c_attn",
|
| 98 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
| 99 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
| 100 |
+
"transformer.h.31.mlp.c_proj",
|
| 101 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
| 102 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
| 103 |
+
"transformer.h.10.mlp.w2",
|
| 104 |
+
"transformer.h.21.attn.c_attn",
|
| 105 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
| 106 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
| 107 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
| 108 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
| 109 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
| 110 |
+
"transformer.h.18.mlp.w2",
|
| 111 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
| 112 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
| 113 |
+
"transformer.h.12.mlp.w1",
|
| 114 |
+
"transformer.h.7.mlp.w1",
|
| 115 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
| 116 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
| 117 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
| 118 |
+
"transformer.h.23.attn.c_attn",
|
| 119 |
+
"transformer.h.27.mlp.w2",
|
| 120 |
+
"transformer.h.17.mlp.w2",
|
| 121 |
+
"transformer.h.20.mlp.w2",
|
| 122 |
+
"transformer.h.22.mlp.c_proj",
|
| 123 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
| 124 |
+
"transformer.h.27.mlp.c_proj",
|
| 125 |
+
"transformer.h.0.attn.c_proj",
|
| 126 |
+
"transformer.h.5.attn.c_attn",
|
| 127 |
+
"transformer.h.24.mlp.w2",
|
| 128 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
| 129 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
| 130 |
+
"transformer.h.5.mlp.c_proj",
|
| 131 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
| 132 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
| 133 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
| 134 |
+
"transformer.h.26.attn.c_proj",
|
| 135 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
| 136 |
+
"transformer.h.29.attn.c_attn",
|
| 137 |
+
"transformer.h.15.attn.c_proj",
|
| 138 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
| 139 |
+
"transformer.h.4.mlp.c_proj",
|
| 140 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
| 141 |
+
"transformer.h.0.mlp.c_proj",
|
| 142 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
| 143 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
| 144 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
| 145 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
| 146 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
| 147 |
+
"transformer.h.15.mlp.w2",
|
| 148 |
+
"transformer.h.3.attn.c_attn",
|
| 149 |
+
"transformer.h.28.mlp.w1",
|
| 150 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
| 151 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
| 152 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
| 153 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
| 154 |
+
"transformer.h.31.attn.c_proj",
|
| 155 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
| 156 |
+
"transformer.h.17.mlp.w1",
|
| 157 |
+
"transformer.h.18.mlp.c_proj",
|
| 158 |
+
"transformer.h.19.mlp.c_proj",
|
| 159 |
+
"transformer.h.9.mlp.w2",
|
| 160 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
| 161 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
| 162 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
| 163 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
| 164 |
+
"transformer.h.30.mlp.w2",
|
| 165 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
| 166 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
| 167 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
| 168 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
| 169 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
| 170 |
+
"transformer.h.28.mlp.c_proj",
|
| 171 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
| 172 |
+
"transformer.h.22.attn.c_attn",
|
| 173 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
| 174 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
| 175 |
+
"transformer.h.0.attn.c_attn",
|
| 176 |
+
"transformer.h.11.mlp.w2",
|
| 177 |
+
"transformer.h.19.mlp.w1",
|
| 178 |
+
"transformer.h.26.mlp.w2",
|
| 179 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
| 180 |
+
"transformer.h.29.mlp.w2",
|
| 181 |
+
"transformer.h.27.attn.c_proj",
|
| 182 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
| 183 |
+
"transformer.h.17.mlp.c_proj",
|
| 184 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
| 185 |
+
"transformer.h.6.attn.c_attn",
|
| 186 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
| 187 |
+
"transformer.h.21.mlp.w1",
|
| 188 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
| 189 |
+
"transformer.h.20.mlp.w1",
|
| 190 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
| 191 |
+
"transformer.h.23.mlp.c_proj",
|
| 192 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
| 193 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
| 194 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
| 195 |
+
"transformer.h.9.mlp.c_proj",
|
| 196 |
+
"transformer.h.7.attn.c_attn",
|
| 197 |
+
"transformer.h.29.mlp.w1",
|
| 198 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
| 199 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
| 200 |
+
"transformer.h.11.mlp.w1",
|
| 201 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
| 202 |
+
"transformer.h.5.mlp.w2",
|
| 203 |
+
"transformer.h.11.attn.c_proj",
|
| 204 |
+
"transformer.h.18.attn.c_attn",
|
| 205 |
+
"transformer.h.6.mlp.w1",
|
| 206 |
+
"transformer.h.27.mlp.w1",
|
| 207 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
| 208 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
| 209 |
+
"transformer.h.25.attn.c_attn",
|
| 210 |
+
"transformer.h.1.mlp.w2",
|
| 211 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
| 212 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
| 213 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
| 214 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
| 215 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
| 216 |
+
"transformer.h.14.mlp.w1",
|
| 217 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
| 218 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
| 219 |
+
"transformer.h.16.attn.c_attn",
|
| 220 |
+
"transformer.h.3.mlp.w1",
|
| 221 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
| 222 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
| 223 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
| 224 |
+
"transformer.h.15.mlp.w1",
|
| 225 |
+
"transformer.h.9.attn.c_proj",
|
| 226 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
| 227 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
| 228 |
+
"transformer.h.12.attn.c_attn",
|
| 229 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
| 230 |
+
"transformer.h.28.attn.c_proj",
|
| 231 |
+
"transformer.h.13.mlp.w2",
|
| 232 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
| 233 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
| 234 |
+
"transformer.h.22.mlp.w1",
|
| 235 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
| 236 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
| 237 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
| 238 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
| 239 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
| 240 |
+
"transformer.h.24.mlp.w1",
|
| 241 |
+
"transformer.h.12.mlp.w2",
|
| 242 |
+
"transformer.h.30.mlp.c_proj",
|
| 243 |
+
"transformer.h.3.attn.c_proj",
|
| 244 |
+
"transformer.h.11.mlp.c_proj",
|
| 245 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
| 246 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
| 247 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
| 248 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
| 249 |
+
"transformer.h.18.mlp.w1",
|
| 250 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
| 251 |
+
"transformer.h.23.mlp.w1",
|
| 252 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
| 253 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
| 254 |
+
"transformer.h.1.mlp.w1",
|
| 255 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
| 256 |
+
"transformer.h.29.attn.c_proj",
|
| 257 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
| 258 |
+
"transformer.h.21.attn.c_proj",
|
| 259 |
+
"transformer.h.7.attn.c_proj",
|
| 260 |
+
"transformer.h.12.mlp.c_proj",
|
| 261 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
| 262 |
+
"transformer.h.17.attn.c_proj",
|
| 263 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
| 264 |
+
"transformer.h.20.attn.c_attn",
|
| 265 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
| 266 |
+
"transformer.h.14.attn.c_proj",
|
| 267 |
+
"transformer.h.13.mlp.c_proj",
|
| 268 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
| 269 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
| 270 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
| 271 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
| 272 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
| 273 |
+
"transformer.h.23.mlp.w2",
|
| 274 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
| 275 |
+
"transformer.h.8.attn.c_attn",
|
| 276 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
| 277 |
+
"transformer.h.14.mlp.w2",
|
| 278 |
+
"transformer.h.7.mlp.w2",
|
| 279 |
+
"transformer.h.26.mlp.w1",
|
| 280 |
+
"transformer.h.6.mlp.w2",
|
| 281 |
+
"transformer.h.31.attn.c_attn",
|
| 282 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
| 283 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
| 284 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
| 285 |
+
"transformer.h.28.mlp.w2",
|
| 286 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
| 287 |
+
"transformer.h.2.mlp.w2",
|
| 288 |
+
"transformer.h.2.attn.c_attn",
|
| 289 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
| 290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
| 291 |
+
"transformer.h.18.attn.c_proj",
|
| 292 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
| 293 |
+
"transformer.h.12.attn.c_proj",
|
| 294 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
| 295 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
| 296 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
| 297 |
+
"transformer.h.24.attn.c_proj",
|
| 298 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
| 299 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
| 300 |
+
"transformer.h.26.attn.c_attn",
|
| 301 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
| 302 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
| 303 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
| 304 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
| 305 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
| 306 |
+
"transformer.h.21.mlp.c_proj",
|
| 307 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
| 308 |
+
"transformer.h.14.mlp.c_proj",
|
| 309 |
+
"transformer.h.24.mlp.c_proj",
|
| 310 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
| 311 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
| 312 |
+
"transformer.h.7.mlp.c_proj",
|
| 313 |
+
"transformer.h.14.attn.c_attn",
|
| 314 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
| 315 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
| 316 |
+
"transformer.h.2.attn.c_proj",
|
| 317 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
| 318 |
+
"transformer.h.9.attn.c_attn",
|
| 319 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
| 320 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
| 321 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
| 322 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
| 323 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
| 324 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
| 325 |
+
"transformer.h.25.mlp.w1",
|
| 326 |
+
"transformer.h.10.attn.c_proj",
|
| 327 |
+
"transformer.h.16.mlp.w1",
|
| 328 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
| 329 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
| 330 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
| 331 |
+
"transformer.h.13.mlp.w1",
|
| 332 |
+
"transformer.h.15.mlp.c_proj",
|
| 333 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
| 334 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
| 335 |
+
"transformer.h.10.mlp.c_proj",
|
| 336 |
+
"transformer.h.16.attn.c_proj",
|
| 337 |
+
"transformer.h.6.attn.c_proj",
|
| 338 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
| 339 |
+
"transformer.h.5.attn.c_proj",
|
| 340 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
| 341 |
+
"transformer.h.1.attn.c_proj",
|
| 342 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
| 343 |
+
"transformer.h.5.mlp.w1",
|
| 344 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
| 345 |
+
"transformer.h.6.mlp.c_proj",
|
| 346 |
+
"transformer.h.31.mlp.w2",
|
| 347 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
| 348 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
| 349 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
| 350 |
+
"transformer.h.10.attn.c_attn",
|
| 351 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
| 352 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
| 353 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
| 354 |
+
"transformer.h.25.attn.c_proj",
|
| 355 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
| 356 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
| 357 |
+
"transformer.h.4.mlp.w2",
|
| 358 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
| 359 |
+
"transformer.h.9.mlp.w1",
|
| 360 |
+
"transformer.h.2.mlp.c_proj",
|
| 361 |
+
"transformer.h.22.attn.c_proj",
|
| 362 |
+
"transformer.h.25.mlp.w2",
|
| 363 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
| 364 |
+
"transformer.h.30.attn.c_proj",
|
| 365 |
+
"transformer.h.20.attn.c_proj",
|
| 366 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
| 367 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
| 368 |
+
"transformer.h.3.mlp.w2",
|
| 369 |
+
"transformer.h.19.attn.c_attn",
|
| 370 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
| 371 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
| 372 |
+
"transformer.h.1.attn.c_attn",
|
| 373 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
| 374 |
+
"transformer.h.4.attn.c_proj",
|
| 375 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc"
|
| 376 |
+
],
|
| 377 |
+
"task_type": "CAUSAL_LM",
|
| 378 |
+
"use_dora": false,
|
| 379 |
+
"use_rslora": false
|
| 380 |
+
}
|