--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: suarkadipa/GPT-2-finetuned-papers results: [] datasets: - CShorten/ML-ArXiv-Papers language: - en base_model: - distilbert/distilgpt2 --- # suarkadipa/GPT-2-finetuned-papers This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an CShorten/ML-ArXiv-Papers dataset. Based on https://python.plainenglish.io/i-fine-tuned-gpt-2-on-100k-scientific-papers-heres-the-result-903f0784fe65 It achieves the following results on the evaluation set: - Train Loss: 2.4225 - Validation Loss: 2.2164 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations # How to run in Google Colab ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer_fromhub = AutoTokenizer.from_pretrained("suarkadipa/GPT-2-finetuned-papers") model_fromhub = AutoModelForCausalLM.from_pretrained("suarkadipa/GPT-2-finetuned-papers", from_tf=True) text_generator = pipeline( "text-generation", model=model_fromhub, tokenizer=tokenizer_fromhub, framework="tf", max_new_tokens=3000 ) // change with your text test_sentence = "the role of recommender systems" res=text_generator(test_sentence)[0]["generated_text"].replace("\n", " ") res ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 500, 'decay_rate': 0.95, 'staircase': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.4225 | 2.2164 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3