--- base_model: DeepPavlov/bert-base-bg-cs-pl-ru-cased tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_2_0_slavicbert results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8427043808209728 - name: Recall type: recall value: 0.8737482117310443 - name: F1 type: f1 value: 0.8579455662862159 - name: Accuracy type: accuracy value: 0.9552753162160115 --- # CNEC_2_0_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.3354 - Precision: 0.8427 - Recall: 0.8737 - F1: 0.8579 - Accuracy: 0.9553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.288 | 2.22 | 1000 | 0.2461 | 0.7705 | 0.7926 | 0.7814 | 0.9413 | | 0.1551 | 4.44 | 2000 | 0.2270 | 0.8116 | 0.8444 | 0.8277 | 0.9503 | | 0.0963 | 6.67 | 3000 | 0.2220 | 0.8181 | 0.8623 | 0.8396 | 0.9533 | | 0.0619 | 8.89 | 4000 | 0.2520 | 0.8202 | 0.8598 | 0.8395 | 0.9507 | | 0.044 | 11.11 | 5000 | 0.2613 | 0.8332 | 0.8680 | 0.8502 | 0.9535 | | 0.0283 | 13.33 | 6000 | 0.2734 | 0.8377 | 0.8673 | 0.8522 | 0.9546 | | 0.0227 | 15.56 | 7000 | 0.2908 | 0.8390 | 0.8687 | 0.8536 | 0.9546 | | 0.0173 | 17.78 | 8000 | 0.3083 | 0.8393 | 0.8670 | 0.8529 | 0.9528 | | 0.013 | 20.0 | 9000 | 0.3238 | 0.8333 | 0.8673 | 0.8500 | 0.9522 | | 0.0103 | 22.22 | 10000 | 0.3352 | 0.8325 | 0.8712 | 0.8515 | 0.9539 | | 0.0091 | 24.44 | 11000 | 0.3299 | 0.8400 | 0.8655 | 0.8526 | 0.9542 | | 0.0073 | 26.67 | 12000 | 0.3376 | 0.8387 | 0.8666 | 0.8524 | 0.9535 | | 0.0065 | 28.89 | 13000 | 0.3354 | 0.8427 | 0.8737 | 0.8579 | 0.9553 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0