--- base_model: DeepPavlov/bert-base-bg-cs-pl-ru-cased tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_1_1_ext_slavicbert results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8606811145510835 - name: Recall type: recall value: 0.8915018706574025 - name: F1 type: f1 value: 0.8758204253084799 - name: Accuracy type: accuracy value: 0.9626885008032336 --- # CNEC_1_1_ext_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2572 - Precision: 0.8607 - Recall: 0.8915 - F1: 0.8758 - Accuracy: 0.9627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3946 | 1.72 | 500 | 0.1925 | 0.7835 | 0.8471 | 0.8141 | 0.9467 | | 0.1653 | 3.44 | 1000 | 0.1627 | 0.8340 | 0.8675 | 0.8504 | 0.9572 | | 0.1183 | 5.15 | 1500 | 0.1700 | 0.8378 | 0.8808 | 0.8588 | 0.9595 | | 0.0869 | 6.87 | 2000 | 0.1901 | 0.8554 | 0.8728 | 0.8640 | 0.9589 | | 0.0661 | 8.59 | 2500 | 0.2037 | 0.8482 | 0.8867 | 0.8670 | 0.9595 | | 0.053 | 10.31 | 3000 | 0.2011 | 0.8460 | 0.8867 | 0.8659 | 0.9609 | | 0.043 | 12.03 | 3500 | 0.2216 | 0.8555 | 0.8888 | 0.8718 | 0.9593 | | 0.0358 | 13.75 | 4000 | 0.2245 | 0.8492 | 0.8878 | 0.8680 | 0.9603 | | 0.0296 | 15.46 | 4500 | 0.2401 | 0.8513 | 0.8872 | 0.8689 | 0.9603 | | 0.0264 | 17.18 | 5000 | 0.2415 | 0.8564 | 0.8862 | 0.8710 | 0.9610 | | 0.0212 | 18.9 | 5500 | 0.2570 | 0.8557 | 0.8872 | 0.8712 | 0.9622 | | 0.0205 | 20.62 | 6000 | 0.2540 | 0.8567 | 0.8883 | 0.8722 | 0.9616 | | 0.0167 | 22.34 | 6500 | 0.2573 | 0.8568 | 0.8894 | 0.8728 | 0.9614 | | 0.0161 | 24.05 | 7000 | 0.2572 | 0.8607 | 0.8915 | 0.8758 | 0.9627 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0