--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.829450915141431 - name: Recall type: recall value: 0.8815207780725022 - name: F1 type: f1 value: 0.8546935276468067 - name: Accuracy type: accuracy value: 0.9615129396151294 --- # CNEC1_1_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.3089 - Precision: 0.8295 - Recall: 0.8815 - F1: 0.8547 - Accuracy: 0.9615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7892 | 0.11 | 500 | 0.5205 | 0.5042 | 0.6631 | 0.5728 | 0.9114 | | 0.5593 | 0.21 | 1000 | 0.3722 | 0.6071 | 0.7241 | 0.6605 | 0.9246 | | 0.5423 | 0.32 | 1500 | 0.3822 | 0.6001 | 0.7445 | 0.6646 | 0.9289 | | 0.4507 | 0.43 | 2000 | 0.3354 | 0.7023 | 0.8073 | 0.7511 | 0.9423 | | 0.4301 | 0.53 | 2500 | 0.3867 | 0.6740 | 0.7878 | 0.7265 | 0.9364 | | 0.4034 | 0.64 | 3000 | 0.3318 | 0.7601 | 0.8011 | 0.7800 | 0.9435 | | 0.4184 | 0.75 | 3500 | 0.3698 | 0.7133 | 0.7732 | 0.7420 | 0.9407 | | 0.4236 | 0.85 | 4000 | 0.3648 | 0.7252 | 0.8258 | 0.7722 | 0.9415 | | 0.3578 | 0.96 | 4500 | 0.2941 | 0.7341 | 0.8373 | 0.7823 | 0.9450 | | 0.4098 | 1.06 | 5000 | 0.3095 | 0.7428 | 0.8386 | 0.7878 | 0.9456 | | 0.3196 | 1.17 | 5500 | 0.2866 | 0.7563 | 0.8532 | 0.8018 | 0.9486 | | 0.3572 | 1.28 | 6000 | 0.3165 | 0.7445 | 0.8232 | 0.7819 | 0.9479 | | 0.2977 | 1.38 | 6500 | 0.2743 | 0.7762 | 0.8249 | 0.7998 | 0.9487 | | 0.279 | 1.49 | 7000 | 0.3120 | 0.7637 | 0.8572 | 0.8077 | 0.9525 | | 0.308 | 1.6 | 7500 | 0.3020 | 0.7589 | 0.8364 | 0.7958 | 0.9465 | | 0.2879 | 1.7 | 8000 | 0.2717 | 0.7817 | 0.8594 | 0.8187 | 0.9514 | | 0.2365 | 1.81 | 8500 | 0.2849 | 0.7780 | 0.8554 | 0.8149 | 0.9535 | | 0.2658 | 1.92 | 9000 | 0.2476 | 0.7829 | 0.8484 | 0.8143 | 0.9551 | | 0.2698 | 2.02 | 9500 | 0.3102 | 0.7622 | 0.8457 | 0.8018 | 0.9520 | | 0.2297 | 2.13 | 10000 | 0.3206 | 0.7767 | 0.8612 | 0.8168 | 0.9523 | | 0.2489 | 2.24 | 10500 | 0.3014 | 0.7662 | 0.8722 | 0.8158 | 0.9522 | | 0.1962 | 2.34 | 11000 | 0.2986 | 0.7723 | 0.8652 | 0.8161 | 0.9528 | | 0.2458 | 2.45 | 11500 | 0.2584 | 0.7812 | 0.8696 | 0.8230 | 0.9536 | | 0.2108 | 2.56 | 12000 | 0.2866 | 0.7922 | 0.8798 | 0.8337 | 0.9575 | | 0.2838 | 2.66 | 12500 | 0.2601 | 0.7740 | 0.8599 | 0.8147 | 0.9557 | | 0.2092 | 2.77 | 13000 | 0.3028 | 0.7846 | 0.8585 | 0.8199 | 0.9536 | | 0.2121 | 2.88 | 13500 | 0.2591 | 0.7798 | 0.8687 | 0.8218 | 0.9568 | | 0.2445 | 2.98 | 14000 | 0.2742 | 0.7921 | 0.8758 | 0.8318 | 0.9557 | | 0.1728 | 3.09 | 14500 | 0.2930 | 0.8080 | 0.8612 | 0.8337 | 0.9571 | | 0.1426 | 3.19 | 15000 | 0.2775 | 0.7932 | 0.8665 | 0.8282 | 0.9569 | | 0.1705 | 3.3 | 15500 | 0.3666 | 0.8082 | 0.8683 | 0.8372 | 0.9570 | | 0.1324 | 3.41 | 16000 | 0.3011 | 0.8041 | 0.8727 | 0.8370 | 0.9574 | | 0.1716 | 3.51 | 16500 | 0.3092 | 0.8002 | 0.8572 | 0.8277 | 0.9568 | | 0.1465 | 3.62 | 17000 | 0.3439 | 0.7970 | 0.8643 | 0.8293 | 0.9574 | | 0.1277 | 3.73 | 17500 | 0.3394 | 0.8126 | 0.8798 | 0.8448 | 0.9586 | | 0.2132 | 3.83 | 18000 | 0.3296 | 0.8085 | 0.8736 | 0.8398 | 0.9589 | | 0.211 | 3.94 | 18500 | 0.3000 | 0.8220 | 0.8820 | 0.8509 | 0.9587 | | 0.137 | 4.05 | 19000 | 0.3241 | 0.8132 | 0.8740 | 0.8425 | 0.9582 | | 0.1247 | 4.15 | 19500 | 0.3241 | 0.8205 | 0.8771 | 0.8479 | 0.9590 | | 0.118 | 4.26 | 20000 | 0.3204 | 0.8336 | 0.8749 | 0.8538 | 0.9594 | | 0.1403 | 4.37 | 20500 | 0.3130 | 0.8345 | 0.8780 | 0.8557 | 0.9612 | | 0.1354 | 4.47 | 21000 | 0.3173 | 0.8229 | 0.8811 | 0.8510 | 0.9604 | | 0.124 | 4.58 | 21500 | 0.3079 | 0.8236 | 0.8811 | 0.8513 | 0.9616 | | 0.1115 | 4.69 | 22000 | 0.3020 | 0.8336 | 0.8815 | 0.8569 | 0.9618 | | 0.0826 | 4.79 | 22500 | 0.3018 | 0.8301 | 0.8811 | 0.8548 | 0.9619 | | 0.1467 | 4.9 | 23000 | 0.3089 | 0.8295 | 0.8815 | 0.8547 | 0.9615 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0