--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-biobert results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9417998413238128 - name: Recall type: recall value: 0.9731803009896351 - name: F1 type: f1 value: 0.9572329579817412 - name: Accuracy type: accuracy value: 0.9797091234395543 --- # roberta-biobert This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0879 - Precision: 0.9418 - Recall: 0.9732 - F1: 0.9572 - Accuracy: 0.9797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4746 | 1.0 | 612 | 0.1085 | 0.9272 | 0.9526 | 0.9397 | 0.9719 | | 0.1335 | 2.0 | 1224 | 0.0932 | 0.9343 | 0.9705 | 0.9521 | 0.9767 | | 0.0912 | 3.0 | 1836 | 0.0846 | 0.9445 | 0.9712 | 0.9576 | 0.9800 | | 0.0702 | 4.0 | 2448 | 0.0852 | 0.9437 | 0.9724 | 0.9578 | 0.9799 | | 0.0524 | 5.0 | 3060 | 0.0879 | 0.9418 | 0.9732 | 0.9572 | 0.9797 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3