TC-MoE / configuration_tcmoe.py
yanshen.1000
Initial commit
48fdca1
# Copyright (c) The HuggingFace Inc. team. All rights reserved.
# Copyright (c) Shen Yan. All rights reserved.
# This code is built upon Huggingface's transformers repository.
from transformers import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class TCMoEConfig(PretrainedConfig):
r"""
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50_304):
Vocabulary size of the StableLM model. Defines the number of different tokens that
can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`].
intermediate_size (`int`, *optional*, defaults to 6912):
Dimension of the MLP representations.
hidden_size (`int`, *optional*, defaults to 2560):
Dimension of the decoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
rope_pct (`float`, *optional*, defaults to 1.0):
Percentage of hidden dimensions to allocate to rotary embeddings.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
num_experts (`int`, *optional*, defaults to 8):
Number of experts in the TCMoE layer.
top_k (`int`, *optional*, defaults to 2):
Number of top experts to use in the TCMoE layer.
num_null_experts (`int`, *optional*, defaults to 2):
Number of null experts in the TCMoE layer.
initializer_range (`float`, *optional*, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing
all weight matrices.
norm_eps (`float`, *optional*, defaults to 1e-8):
The epsilon used by the normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions
(not used by all models). Only relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
"""
model_type = "tcmoe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50432,
intermediate_size=2816,
hidden_size=1024,
num_hidden_layers=32,
num_attention_heads=16,
num_key_value_heads=2,
rope_pct=1.0,
rope_theta=10000.0,
max_position_embeddings=2048,
num_experts=8,
moe_topk=2,
num_null_experts=2,
initializer_range=0.006,
norm_eps=1e-8,
use_cache=True,
bos_token_id=0,
eos_token_id=0,
tie_word_embeddings=True,
**kwargs,
):
self.vocab_size = vocab_size
self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.rope_pct = rope_pct
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.num_experts = num_experts
self.moe_topk = moe_topk
self.num_null_experts = num_null_experts
self.initializer_range = initializer_range
self.norm_eps = norm_eps
self.use_cache = use_cache
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)