--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-engine-subset-20230313 results: [] --- # videomae-base-finetuned-engine-subset-20230313 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8913 - Accuracy: 0.6745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1110 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6212 | 0.03 | 38 | 2.3629 | 0.3774 | | 2.455 | 1.03 | 76 | 2.3674 | 0.2170 | | 2.4311 | 2.03 | 114 | 2.2191 | 0.3231 | | 2.2768 | 3.03 | 152 | 2.1227 | 0.3608 | | 1.7528 | 4.03 | 190 | 1.7296 | 0.4363 | | 1.5381 | 5.03 | 228 | 1.5016 | 0.4340 | | 1.407 | 6.03 | 266 | 1.2878 | 0.5448 | | 1.1053 | 7.03 | 304 | 1.5210 | 0.4009 | | 1.0893 | 8.03 | 342 | 1.3902 | 0.4623 | | 0.8136 | 9.03 | 380 | 1.6456 | 0.4033 | | 0.9565 | 10.03 | 418 | 1.1826 | 0.5613 | | 1.0147 | 11.03 | 456 | 1.2099 | 0.5118 | | 0.9125 | 12.03 | 494 | 1.1850 | 0.5495 | | 0.7091 | 13.03 | 532 | 1.2324 | 0.5354 | | 0.7361 | 14.03 | 570 | 1.0225 | 0.6226 | | 0.6979 | 15.03 | 608 | 1.0738 | 0.5590 | | 0.5265 | 16.03 | 646 | 1.1062 | 0.5873 | | 0.5651 | 17.03 | 684 | 1.1402 | 0.5802 | | 0.7182 | 18.03 | 722 | 1.0974 | 0.5802 | | 0.6582 | 19.03 | 760 | 1.0529 | 0.6179 | | 0.5709 | 20.03 | 798 | 0.9655 | 0.6344 | | 0.4808 | 21.03 | 836 | 1.0441 | 0.6226 | | 0.5816 | 22.03 | 874 | 0.9445 | 0.6439 | | 0.5057 | 23.03 | 912 | 1.0248 | 0.6321 | | 0.6253 | 24.03 | 950 | 0.9518 | 0.6604 | | 0.6841 | 25.03 | 988 | 0.8913 | 0.6745 | | 0.5933 | 26.03 | 1026 | 0.9013 | 0.6439 | | 0.389 | 27.03 | 1064 | 0.9090 | 0.6627 | | 0.3705 | 28.03 | 1102 | 0.8936 | 0.6722 | | 0.6043 | 29.01 | 1110 | 0.8942 | 0.6722 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2