--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: XLMRoberta-base-amazon-massive-Intent results: [] widget: - text: staubsauge den flur datasets: - AmazonScience/massive language: - en - ru --- # XLMRoberta-base-amazon-massive-Intent This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5620 - Accuracy: 0.8751 - F1: 0.8269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 2.4641 | 1.0 | 1440 | 1.4258 | 0.6709 | 0.4126 | | 1.1447 | 2.0 | 2880 | 0.8477 | 0.8060 | 0.6318 | | 0.7437 | 3.0 | 4320 | 0.6688 | 0.8409 | 0.7060 | | 0.5543 | 4.0 | 5760 | 0.6006 | 0.8601 | 0.7813 | | 0.4375 | 5.0 | 7200 | 0.5780 | 0.8635 | 0.7937 | | 0.3763 | 6.0 | 8640 | 0.5748 | 0.8694 | 0.8170 | | 0.3265 | 7.0 | 10080 | 0.5620 | 0.8751 | 0.8269 | | 0.2916 | 8.0 | 11520 | 0.5701 | 0.8756 | 0.8260 | | 0.2628 | 9.0 | 12960 | 0.5728 | 0.8760 | 0.8271 | | 0.2474 | 10.0 | 14400 | 0.5740 | 0.8770 | 0.8288 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1