2023-10-18 20:40:46,083 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,083 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 128) (position_embeddings): Embedding(512, 128) (token_type_embeddings): Embedding(2, 128) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-1): 2 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=128, out_features=128, bias=True) (key): Linear(in_features=128, out_features=128, bias=True) (value): Linear(in_features=128, out_features=128, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=128, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=128, out_features=512, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=512, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=128, out_features=128, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=128, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-18 20:40:46,083 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,083 MultiCorpus: 7936 train + 992 dev + 992 test sentences - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr 2023-10-18 20:40:46,083 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,083 Train: 7936 sentences 2023-10-18 20:40:46,083 (train_with_dev=False, train_with_test=False) 2023-10-18 20:40:46,083 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,083 Training Params: 2023-10-18 20:40:46,083 - learning_rate: "3e-05" 2023-10-18 20:40:46,084 - mini_batch_size: "4" 2023-10-18 20:40:46,084 - max_epochs: "10" 2023-10-18 20:40:46,084 - shuffle: "True" 2023-10-18 20:40:46,084 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,084 Plugins: 2023-10-18 20:40:46,084 - TensorboardLogger 2023-10-18 20:40:46,084 - LinearScheduler | warmup_fraction: '0.1' 2023-10-18 20:40:46,084 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,084 Final evaluation on model from best epoch (best-model.pt) 2023-10-18 20:40:46,084 - metric: "('micro avg', 'f1-score')" 2023-10-18 20:40:46,084 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,084 Computation: 2023-10-18 20:40:46,084 - compute on device: cuda:0 2023-10-18 20:40:46,084 - embedding storage: none 2023-10-18 20:40:46,084 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,084 Model training base path: "hmbench-icdar/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2" 2023-10-18 20:40:46,084 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,084 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:40:46,084 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-18 20:40:49,484 epoch 1 - iter 198/1984 - loss 2.40181665 - time (sec): 3.40 - samples/sec: 4847.36 - lr: 0.000003 - momentum: 0.000000 2023-10-18 20:40:52,929 epoch 1 - iter 396/1984 - loss 2.06051017 - time (sec): 6.85 - samples/sec: 4779.10 - lr: 0.000006 - momentum: 0.000000 2023-10-18 20:40:56,097 epoch 1 - iter 594/1984 - loss 1.65005864 - time (sec): 10.01 - samples/sec: 4974.57 - lr: 0.000009 - momentum: 0.000000 2023-10-18 20:40:59,185 epoch 1 - iter 792/1984 - loss 1.36396891 - time (sec): 13.10 - samples/sec: 5050.84 - lr: 0.000012 - momentum: 0.000000 2023-10-18 20:41:02,224 epoch 1 - iter 990/1984 - loss 1.19110595 - time (sec): 16.14 - samples/sec: 5155.96 - lr: 0.000015 - momentum: 0.000000 2023-10-18 20:41:05,316 epoch 1 - iter 1188/1984 - loss 1.06964597 - time (sec): 19.23 - samples/sec: 5168.26 - lr: 0.000018 - momentum: 0.000000 2023-10-18 20:41:08,345 epoch 1 - iter 1386/1984 - loss 0.97250875 - time (sec): 22.26 - samples/sec: 5200.44 - lr: 0.000021 - momentum: 0.000000 2023-10-18 20:41:11,364 epoch 1 - iter 1584/1984 - loss 0.89537197 - time (sec): 25.28 - samples/sec: 5207.18 - lr: 0.000024 - momentum: 0.000000 2023-10-18 20:41:14,412 epoch 1 - iter 1782/1984 - loss 0.83846567 - time (sec): 28.33 - samples/sec: 5199.51 - lr: 0.000027 - momentum: 0.000000 2023-10-18 20:41:17,456 epoch 1 - iter 1980/1984 - loss 0.79010219 - time (sec): 31.37 - samples/sec: 5217.57 - lr: 0.000030 - momentum: 0.000000 2023-10-18 20:41:17,514 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:41:17,514 EPOCH 1 done: loss 0.7888 - lr: 0.000030 2023-10-18 20:41:19,039 DEV : loss 0.22708812355995178 - f1-score (micro avg) 0.2642 2023-10-18 20:41:19,058 saving best model 2023-10-18 20:41:19,093 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:41:22,126 epoch 2 - iter 198/1984 - loss 0.32835931 - time (sec): 3.03 - samples/sec: 5320.46 - lr: 0.000030 - momentum: 0.000000 2023-10-18 20:41:25,167 epoch 2 - iter 396/1984 - loss 0.29962721 - time (sec): 6.07 - samples/sec: 5482.59 - lr: 0.000029 - momentum: 0.000000 2023-10-18 20:41:28,151 epoch 2 - iter 594/1984 - loss 0.29692658 - time (sec): 9.06 - samples/sec: 5412.42 - lr: 0.000029 - momentum: 0.000000 2023-10-18 20:41:31,207 epoch 2 - iter 792/1984 - loss 0.29657996 - time (sec): 12.11 - samples/sec: 5383.77 - lr: 0.000029 - momentum: 0.000000 2023-10-18 20:41:34,225 epoch 2 - iter 990/1984 - loss 0.28962444 - time (sec): 15.13 - samples/sec: 5372.89 - lr: 0.000028 - momentum: 0.000000 2023-10-18 20:41:37,219 epoch 2 - iter 1188/1984 - loss 0.28843578 - time (sec): 18.13 - samples/sec: 5362.62 - lr: 0.000028 - momentum: 0.000000 2023-10-18 20:41:40,292 epoch 2 - iter 1386/1984 - loss 0.29008589 - time (sec): 21.20 - samples/sec: 5333.12 - lr: 0.000028 - momentum: 0.000000 2023-10-18 20:41:43,095 epoch 2 - iter 1584/1984 - loss 0.28766926 - time (sec): 24.00 - samples/sec: 5415.25 - lr: 0.000027 - momentum: 0.000000 2023-10-18 20:41:46,153 epoch 2 - iter 1782/1984 - loss 0.28669108 - time (sec): 27.06 - samples/sec: 5436.91 - lr: 0.000027 - momentum: 0.000000 2023-10-18 20:41:49,222 epoch 2 - iter 1980/1984 - loss 0.28366818 - time (sec): 30.13 - samples/sec: 5432.08 - lr: 0.000027 - momentum: 0.000000 2023-10-18 20:41:49,279 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:41:49,279 EPOCH 2 done: loss 0.2838 - lr: 0.000027 2023-10-18 20:41:51,481 DEV : loss 0.19872356951236725 - f1-score (micro avg) 0.3621 2023-10-18 20:41:51,500 saving best model 2023-10-18 20:41:51,532 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:41:54,500 epoch 3 - iter 198/1984 - loss 0.24485053 - time (sec): 2.97 - samples/sec: 5641.36 - lr: 0.000026 - momentum: 0.000000 2023-10-18 20:41:57,549 epoch 3 - iter 396/1984 - loss 0.25674337 - time (sec): 6.02 - samples/sec: 5432.56 - lr: 0.000026 - momentum: 0.000000 2023-10-18 20:42:00,576 epoch 3 - iter 594/1984 - loss 0.25987147 - time (sec): 9.04 - samples/sec: 5408.81 - lr: 0.000026 - momentum: 0.000000 2023-10-18 20:42:03,632 epoch 3 - iter 792/1984 - loss 0.25653396 - time (sec): 12.10 - samples/sec: 5357.86 - lr: 0.000025 - momentum: 0.000000 2023-10-18 20:42:06,666 epoch 3 - iter 990/1984 - loss 0.24885921 - time (sec): 15.13 - samples/sec: 5396.16 - lr: 0.000025 - momentum: 0.000000 2023-10-18 20:42:09,707 epoch 3 - iter 1188/1984 - loss 0.25191638 - time (sec): 18.17 - samples/sec: 5341.92 - lr: 0.000025 - momentum: 0.000000 2023-10-18 20:42:12,610 epoch 3 - iter 1386/1984 - loss 0.25739981 - time (sec): 21.08 - samples/sec: 5388.28 - lr: 0.000024 - momentum: 0.000000 2023-10-18 20:42:15,681 epoch 3 - iter 1584/1984 - loss 0.25300334 - time (sec): 24.15 - samples/sec: 5398.44 - lr: 0.000024 - momentum: 0.000000 2023-10-18 20:42:18,737 epoch 3 - iter 1782/1984 - loss 0.24809037 - time (sec): 27.20 - samples/sec: 5403.39 - lr: 0.000024 - momentum: 0.000000 2023-10-18 20:42:21,795 epoch 3 - iter 1980/1984 - loss 0.24646940 - time (sec): 30.26 - samples/sec: 5404.26 - lr: 0.000023 - momentum: 0.000000 2023-10-18 20:42:21,867 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:42:21,867 EPOCH 3 done: loss 0.2463 - lr: 0.000023 2023-10-18 20:42:23,662 DEV : loss 0.18124178051948547 - f1-score (micro avg) 0.3771 2023-10-18 20:42:23,680 saving best model 2023-10-18 20:42:23,714 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:42:26,738 epoch 4 - iter 198/1984 - loss 0.23822861 - time (sec): 3.02 - samples/sec: 5210.29 - lr: 0.000023 - momentum: 0.000000 2023-10-18 20:42:29,815 epoch 4 - iter 396/1984 - loss 0.23209028 - time (sec): 6.10 - samples/sec: 5352.30 - lr: 0.000023 - momentum: 0.000000 2023-10-18 20:42:32,825 epoch 4 - iter 594/1984 - loss 0.22861673 - time (sec): 9.11 - samples/sec: 5254.98 - lr: 0.000022 - momentum: 0.000000 2023-10-18 20:42:35,855 epoch 4 - iter 792/1984 - loss 0.22608576 - time (sec): 12.14 - samples/sec: 5233.89 - lr: 0.000022 - momentum: 0.000000 2023-10-18 20:42:38,904 epoch 4 - iter 990/1984 - loss 0.22959492 - time (sec): 15.19 - samples/sec: 5306.19 - lr: 0.000022 - momentum: 0.000000 2023-10-18 20:42:41,627 epoch 4 - iter 1188/1984 - loss 0.22608383 - time (sec): 17.91 - samples/sec: 5413.99 - lr: 0.000021 - momentum: 0.000000 2023-10-18 20:42:44,722 epoch 4 - iter 1386/1984 - loss 0.22511283 - time (sec): 21.01 - samples/sec: 5393.16 - lr: 0.000021 - momentum: 0.000000 2023-10-18 20:42:47,953 epoch 4 - iter 1584/1984 - loss 0.22675445 - time (sec): 24.24 - samples/sec: 5359.52 - lr: 0.000021 - momentum: 0.000000 2023-10-18 20:42:51,209 epoch 4 - iter 1782/1984 - loss 0.22351402 - time (sec): 27.49 - samples/sec: 5338.20 - lr: 0.000020 - momentum: 0.000000 2023-10-18 20:42:54,429 epoch 4 - iter 1980/1984 - loss 0.22289582 - time (sec): 30.71 - samples/sec: 5326.93 - lr: 0.000020 - momentum: 0.000000 2023-10-18 20:42:54,494 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:42:54,494 EPOCH 4 done: loss 0.2227 - lr: 0.000020 2023-10-18 20:42:56,316 DEV : loss 0.1685991734266281 - f1-score (micro avg) 0.4076 2023-10-18 20:42:56,334 saving best model 2023-10-18 20:42:56,368 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:42:59,420 epoch 5 - iter 198/1984 - loss 0.18916448 - time (sec): 3.05 - samples/sec: 5486.17 - lr: 0.000020 - momentum: 0.000000 2023-10-18 20:43:02,418 epoch 5 - iter 396/1984 - loss 0.19556003 - time (sec): 6.05 - samples/sec: 5364.05 - lr: 0.000019 - momentum: 0.000000 2023-10-18 20:43:05,400 epoch 5 - iter 594/1984 - loss 0.19887775 - time (sec): 9.03 - samples/sec: 5281.04 - lr: 0.000019 - momentum: 0.000000 2023-10-18 20:43:08,412 epoch 5 - iter 792/1984 - loss 0.19819805 - time (sec): 12.04 - samples/sec: 5354.70 - lr: 0.000019 - momentum: 0.000000 2023-10-18 20:43:11,457 epoch 5 - iter 990/1984 - loss 0.20054697 - time (sec): 15.09 - samples/sec: 5333.89 - lr: 0.000018 - momentum: 0.000000 2023-10-18 20:43:14,512 epoch 5 - iter 1188/1984 - loss 0.20228121 - time (sec): 18.14 - samples/sec: 5324.58 - lr: 0.000018 - momentum: 0.000000 2023-10-18 20:43:17,524 epoch 5 - iter 1386/1984 - loss 0.20335431 - time (sec): 21.15 - samples/sec: 5352.50 - lr: 0.000018 - momentum: 0.000000 2023-10-18 20:43:20,519 epoch 5 - iter 1584/1984 - loss 0.20160468 - time (sec): 24.15 - samples/sec: 5381.60 - lr: 0.000017 - momentum: 0.000000 2023-10-18 20:43:23,580 epoch 5 - iter 1782/1984 - loss 0.20444659 - time (sec): 27.21 - samples/sec: 5400.66 - lr: 0.000017 - momentum: 0.000000 2023-10-18 20:43:26,633 epoch 5 - iter 1980/1984 - loss 0.20797252 - time (sec): 30.26 - samples/sec: 5405.93 - lr: 0.000017 - momentum: 0.000000 2023-10-18 20:43:26,699 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:43:26,699 EPOCH 5 done: loss 0.2080 - lr: 0.000017 2023-10-18 20:43:28,526 DEV : loss 0.16076675057411194 - f1-score (micro avg) 0.4272 2023-10-18 20:43:28,544 saving best model 2023-10-18 20:43:28,580 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:43:31,611 epoch 6 - iter 198/1984 - loss 0.18626775 - time (sec): 3.03 - samples/sec: 5385.04 - lr: 0.000016 - momentum: 0.000000 2023-10-18 20:43:34,762 epoch 6 - iter 396/1984 - loss 0.18358758 - time (sec): 6.18 - samples/sec: 5174.46 - lr: 0.000016 - momentum: 0.000000 2023-10-18 20:43:37,867 epoch 6 - iter 594/1984 - loss 0.18721054 - time (sec): 9.29 - samples/sec: 5277.32 - lr: 0.000016 - momentum: 0.000000 2023-10-18 20:43:40,881 epoch 6 - iter 792/1984 - loss 0.18658538 - time (sec): 12.30 - samples/sec: 5288.77 - lr: 0.000015 - momentum: 0.000000 2023-10-18 20:43:43,940 epoch 6 - iter 990/1984 - loss 0.18950152 - time (sec): 15.36 - samples/sec: 5274.00 - lr: 0.000015 - momentum: 0.000000 2023-10-18 20:43:46,978 epoch 6 - iter 1188/1984 - loss 0.18810016 - time (sec): 18.40 - samples/sec: 5298.65 - lr: 0.000015 - momentum: 0.000000 2023-10-18 20:43:49,811 epoch 6 - iter 1386/1984 - loss 0.19049194 - time (sec): 21.23 - samples/sec: 5340.47 - lr: 0.000014 - momentum: 0.000000 2023-10-18 20:43:52,777 epoch 6 - iter 1584/1984 - loss 0.19125360 - time (sec): 24.20 - samples/sec: 5349.24 - lr: 0.000014 - momentum: 0.000000 2023-10-18 20:43:55,574 epoch 6 - iter 1782/1984 - loss 0.19255913 - time (sec): 26.99 - samples/sec: 5394.96 - lr: 0.000014 - momentum: 0.000000 2023-10-18 20:43:58,643 epoch 6 - iter 1980/1984 - loss 0.19515696 - time (sec): 30.06 - samples/sec: 5444.12 - lr: 0.000013 - momentum: 0.000000 2023-10-18 20:43:58,710 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:43:58,710 EPOCH 6 done: loss 0.1950 - lr: 0.000013 2023-10-18 20:44:00,528 DEV : loss 0.1576894223690033 - f1-score (micro avg) 0.4482 2023-10-18 20:44:00,546 saving best model 2023-10-18 20:44:00,581 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:44:03,606 epoch 7 - iter 198/1984 - loss 0.20041330 - time (sec): 3.02 - samples/sec: 5330.01 - lr: 0.000013 - momentum: 0.000000 2023-10-18 20:44:06,304 epoch 7 - iter 396/1984 - loss 0.19185999 - time (sec): 5.72 - samples/sec: 5607.62 - lr: 0.000013 - momentum: 0.000000 2023-10-18 20:44:09,246 epoch 7 - iter 594/1984 - loss 0.19074333 - time (sec): 8.66 - samples/sec: 5651.53 - lr: 0.000012 - momentum: 0.000000 2023-10-18 20:44:12,277 epoch 7 - iter 792/1984 - loss 0.19616294 - time (sec): 11.70 - samples/sec: 5593.71 - lr: 0.000012 - momentum: 0.000000 2023-10-18 20:44:15,367 epoch 7 - iter 990/1984 - loss 0.19168219 - time (sec): 14.79 - samples/sec: 5536.96 - lr: 0.000012 - momentum: 0.000000 2023-10-18 20:44:18,405 epoch 7 - iter 1188/1984 - loss 0.18962249 - time (sec): 17.82 - samples/sec: 5504.98 - lr: 0.000011 - momentum: 0.000000 2023-10-18 20:44:21,422 epoch 7 - iter 1386/1984 - loss 0.18950612 - time (sec): 20.84 - samples/sec: 5474.31 - lr: 0.000011 - momentum: 0.000000 2023-10-18 20:44:24,452 epoch 7 - iter 1584/1984 - loss 0.18837304 - time (sec): 23.87 - samples/sec: 5449.01 - lr: 0.000011 - momentum: 0.000000 2023-10-18 20:44:27,644 epoch 7 - iter 1782/1984 - loss 0.18498108 - time (sec): 27.06 - samples/sec: 5459.72 - lr: 0.000010 - momentum: 0.000000 2023-10-18 20:44:30,700 epoch 7 - iter 1980/1984 - loss 0.18632929 - time (sec): 30.12 - samples/sec: 5433.74 - lr: 0.000010 - momentum: 0.000000 2023-10-18 20:44:30,761 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:44:30,761 EPOCH 7 done: loss 0.1860 - lr: 0.000010 2023-10-18 20:44:32,576 DEV : loss 0.158553346991539 - f1-score (micro avg) 0.4563 2023-10-18 20:44:32,594 saving best model 2023-10-18 20:44:32,627 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:44:35,383 epoch 8 - iter 198/1984 - loss 0.18600477 - time (sec): 2.75 - samples/sec: 6073.68 - lr: 0.000010 - momentum: 0.000000 2023-10-18 20:44:38,367 epoch 8 - iter 396/1984 - loss 0.17748589 - time (sec): 5.74 - samples/sec: 5766.31 - lr: 0.000009 - momentum: 0.000000 2023-10-18 20:44:41,403 epoch 8 - iter 594/1984 - loss 0.17785171 - time (sec): 8.77 - samples/sec: 5787.16 - lr: 0.000009 - momentum: 0.000000 2023-10-18 20:44:44,402 epoch 8 - iter 792/1984 - loss 0.18108144 - time (sec): 11.77 - samples/sec: 5648.04 - lr: 0.000009 - momentum: 0.000000 2023-10-18 20:44:47,271 epoch 8 - iter 990/1984 - loss 0.17884882 - time (sec): 14.64 - samples/sec: 5596.01 - lr: 0.000008 - momentum: 0.000000 2023-10-18 20:44:50,250 epoch 8 - iter 1188/1984 - loss 0.18579308 - time (sec): 17.62 - samples/sec: 5569.41 - lr: 0.000008 - momentum: 0.000000 2023-10-18 20:44:53,279 epoch 8 - iter 1386/1984 - loss 0.18431354 - time (sec): 20.65 - samples/sec: 5527.58 - lr: 0.000008 - momentum: 0.000000 2023-10-18 20:44:56,298 epoch 8 - iter 1584/1984 - loss 0.18224221 - time (sec): 23.67 - samples/sec: 5503.83 - lr: 0.000007 - momentum: 0.000000 2023-10-18 20:44:59,335 epoch 8 - iter 1782/1984 - loss 0.18145094 - time (sec): 26.71 - samples/sec: 5496.95 - lr: 0.000007 - momentum: 0.000000 2023-10-18 20:45:02,392 epoch 8 - iter 1980/1984 - loss 0.18085147 - time (sec): 29.76 - samples/sec: 5496.75 - lr: 0.000007 - momentum: 0.000000 2023-10-18 20:45:02,463 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:45:02,463 EPOCH 8 done: loss 0.1807 - lr: 0.000007 2023-10-18 20:45:04,686 DEV : loss 0.15737873315811157 - f1-score (micro avg) 0.4634 2023-10-18 20:45:04,704 saving best model 2023-10-18 20:45:04,739 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:45:07,834 epoch 9 - iter 198/1984 - loss 0.17913017 - time (sec): 3.09 - samples/sec: 5424.89 - lr: 0.000006 - momentum: 0.000000 2023-10-18 20:45:10,867 epoch 9 - iter 396/1984 - loss 0.18063398 - time (sec): 6.13 - samples/sec: 5637.56 - lr: 0.000006 - momentum: 0.000000 2023-10-18 20:45:13,885 epoch 9 - iter 594/1984 - loss 0.17485929 - time (sec): 9.14 - samples/sec: 5510.69 - lr: 0.000006 - momentum: 0.000000 2023-10-18 20:45:16,911 epoch 9 - iter 792/1984 - loss 0.17546060 - time (sec): 12.17 - samples/sec: 5414.96 - lr: 0.000005 - momentum: 0.000000 2023-10-18 20:45:19,931 epoch 9 - iter 990/1984 - loss 0.17552482 - time (sec): 15.19 - samples/sec: 5424.88 - lr: 0.000005 - momentum: 0.000000 2023-10-18 20:45:23,005 epoch 9 - iter 1188/1984 - loss 0.18049553 - time (sec): 18.26 - samples/sec: 5403.10 - lr: 0.000005 - momentum: 0.000000 2023-10-18 20:45:26,042 epoch 9 - iter 1386/1984 - loss 0.18155530 - time (sec): 21.30 - samples/sec: 5357.94 - lr: 0.000004 - momentum: 0.000000 2023-10-18 20:45:29,095 epoch 9 - iter 1584/1984 - loss 0.17860347 - time (sec): 24.36 - samples/sec: 5354.22 - lr: 0.000004 - momentum: 0.000000 2023-10-18 20:45:32,172 epoch 9 - iter 1782/1984 - loss 0.17832306 - time (sec): 27.43 - samples/sec: 5365.33 - lr: 0.000004 - momentum: 0.000000 2023-10-18 20:45:35,265 epoch 9 - iter 1980/1984 - loss 0.17617574 - time (sec): 30.53 - samples/sec: 5361.27 - lr: 0.000003 - momentum: 0.000000 2023-10-18 20:45:35,330 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:45:35,330 EPOCH 9 done: loss 0.1760 - lr: 0.000003 2023-10-18 20:45:37,172 DEV : loss 0.15737827122211456 - f1-score (micro avg) 0.4735 2023-10-18 20:45:37,192 saving best model 2023-10-18 20:45:37,227 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:45:40,620 epoch 10 - iter 198/1984 - loss 0.18505314 - time (sec): 3.39 - samples/sec: 4622.04 - lr: 0.000003 - momentum: 0.000000 2023-10-18 20:45:43,687 epoch 10 - iter 396/1984 - loss 0.17359687 - time (sec): 6.46 - samples/sec: 5035.29 - lr: 0.000003 - momentum: 0.000000 2023-10-18 20:45:46,745 epoch 10 - iter 594/1984 - loss 0.17583619 - time (sec): 9.52 - samples/sec: 5147.81 - lr: 0.000002 - momentum: 0.000000 2023-10-18 20:45:49,746 epoch 10 - iter 792/1984 - loss 0.17469714 - time (sec): 12.52 - samples/sec: 5204.51 - lr: 0.000002 - momentum: 0.000000 2023-10-18 20:45:52,506 epoch 10 - iter 990/1984 - loss 0.17268153 - time (sec): 15.28 - samples/sec: 5359.97 - lr: 0.000002 - momentum: 0.000000 2023-10-18 20:45:55,438 epoch 10 - iter 1188/1984 - loss 0.17585525 - time (sec): 18.21 - samples/sec: 5413.48 - lr: 0.000001 - momentum: 0.000000 2023-10-18 20:45:58,487 epoch 10 - iter 1386/1984 - loss 0.17518554 - time (sec): 21.26 - samples/sec: 5415.87 - lr: 0.000001 - momentum: 0.000000 2023-10-18 20:46:01,428 epoch 10 - iter 1584/1984 - loss 0.17473003 - time (sec): 24.20 - samples/sec: 5442.09 - lr: 0.000001 - momentum: 0.000000 2023-10-18 20:46:04,477 epoch 10 - iter 1782/1984 - loss 0.17456587 - time (sec): 27.25 - samples/sec: 5406.90 - lr: 0.000000 - momentum: 0.000000 2023-10-18 20:46:07,538 epoch 10 - iter 1980/1984 - loss 0.17442832 - time (sec): 30.31 - samples/sec: 5402.43 - lr: 0.000000 - momentum: 0.000000 2023-10-18 20:46:07,607 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:46:07,607 EPOCH 10 done: loss 0.1746 - lr: 0.000000 2023-10-18 20:46:09,452 DEV : loss 0.15687035024166107 - f1-score (micro avg) 0.4721 2023-10-18 20:46:09,500 ---------------------------------------------------------------------------------------------------- 2023-10-18 20:46:09,501 Loading model from best epoch ... 2023-10-18 20:46:09,584 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG 2023-10-18 20:46:11,130 Results: - F-score (micro) 0.5343 - F-score (macro) 0.3481 - Accuracy 0.4039 By class: precision recall f1-score support LOC 0.6647 0.6779 0.6712 655 PER 0.2786 0.5022 0.3584 223 ORG 0.1000 0.0079 0.0146 127 micro avg 0.5157 0.5542 0.5343 1005 macro avg 0.3478 0.3960 0.3481 1005 weighted avg 0.5077 0.5542 0.5188 1005 2023-10-18 20:46:11,130 ----------------------------------------------------------------------------------------------------