--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy widget: - src: >- https://datasets-server.huggingface.co/assets/keremberke/pokemon-classification/--/full/train/3/image/image.jpg example_title: Abra - src: >- https://datasets-server.huggingface.co/cached-assets/keremberke/pokemon-classification/--/full/train/383/image/image.jpg example_title: Blastoise model-index: - name: pokemon_classifier results: - task: name: Image Classification type: image-classification dataset: name: keremberke/pokemon-classification type: pokemon-classification config: full split: validation args: full metrics: - name: Accuracy type: accuracy value: 0.08848920863309352 datasets: - keremberke/pokemon-classification language: - en pipeline_tag: image-classification --- # pokemon_classifier This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pokemon-classification and the full datasets. It achieves the following results on the evaluation set: - Loss: 8.0935 - Accuracy: 0.0885 ## Model description This model, referred to as "PokemonClassifier," is a fine-tuned version of google/vit-base-patch16-224 on Pokemon classification datasets. Its primary objective is to accurately identify the Pokemon in input images. While this general summary provides information about its performance in terms of loss and accuracy, its core function lies in precisely classifying Pokemon images. ## Intended uses & limitations This model is limited to the training data it was exposed to and can only identify the following Pokémon: Golbat, Machoke, Omastar, Diglett, Lapras, Kabuto, Persian, Weepinbell, Golem, Dodrio, Raichu, Zapdos, Raticate, Magnemite, Ivysaur, Growlithe, Tangela, Drowzee, Rapidash, Venonat, Pidgeot, Nidorino, Porygon, Lickitung, Rattata, Machop, Charmeleon, Slowbro, Parasect, Eevee, Starmie, Staryu, Psyduck, Dragonair, Magikarp, Vileplume, Marowak, Pidgeotto, Shellder, Mewtwo, Farfetchd, Kingler, Seel, Kakuna, Doduo, Electabuzz, Charmander, Rhyhorn, Tauros, Dugtrio, Poliwrath, Gengar, Exeggutor, Dewgong, Jigglypuff, Geodude, Kadabra, Nidorina, Sandshrew, Grimer, MrMime, Pidgey, Koffing, Ekans, Alolan Sandslash, Venusaur, Snorlax, Paras, Jynx, Chansey, Hitmonchan, Gastly, Kangaskhan, Oddish, Wigglytuff, Graveler, Arcanine, Clefairy, Articuno, Poliwag, Abra, Squirtle, Voltorb, Ponyta, Moltres, Nidoqueen, Magmar, Onix, Vulpix, Butterfree, Krabby, Arbok, Clefable, Goldeen, Magneton, Dratini, Caterpie, Jolteon, Nidoking, Alakazam, Dragonite, Fearow, Slowpoke, Weezing, Beedrill, Weedle, Cloyster, Vaporeon, Gyarados, Golduck, Machamp, Hitmonlee, Primeape, Cubone, Sandslash, Scyther, Haunter, Metapod, Tentacruel, Aerodactyl, Kabutops, Ninetales, Zubat, Rhydon, Mew, Pinsir, Ditto, Victreebel, Omanyte, Horsea, Pikachu, Blastoise, Venomoth, Charizard, Seadra, Muk, Spearow, Bulbasaur, Bellsprout, Electrode, Gloom, Poliwhirl, Flareon, Seaking, Hypno, Wartortle, Mankey, Tentacool, Exeggcute, and Meowth. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0872 | 0.82 | 500 | 7.2669 | 0.0640 | | 0.1581 | 1.64 | 1000 | 7.6072 | 0.0712 | | 0.0536 | 2.46 | 1500 | 7.8952 | 0.0842 | | 0.0169 | 3.28 | 2000 | 8.0935 | 0.0885 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3