backend_args = dict(backend='local') codec = dict( heatmap_size=( 72, 96, ), input_size=( 288, 384, ), sigma=3, type='MSRAHeatmap', unbiased=True) data_mode = 'topdown' dataset_type = 'CocoDataset' default_scope = 'mmpose' model = dict( backbone=dict( extra=dict( stage1=dict( block='BOTTLENECK', num_blocks=(4, ), num_branches=1, num_channels=(64, ), num_modules=1), stage2=dict( block='BASIC', num_blocks=( 4, 4, ), num_branches=2, num_channels=( 48, 96, ), num_modules=1), stage3=dict( block='BASIC', num_blocks=( 4, 4, 4, ), num_branches=3, num_channels=( 48, 96, 192, ), num_modules=4), stage4=dict( block='BASIC', num_blocks=( 4, 4, 4, 4, ), num_branches=4, num_channels=( 48, 96, 192, 384, ), num_modules=3)), in_channels=3, init_cfg=dict( checkpoint= '/scratch/users/yonigoz/mmpose_data/ckpts/hrnet/td-hm_hrnet-w48_dark-8xb32-210e_coco-384x288-39c3c381_20220916.pth', prefix='backbone', type='Pretrained'), type='HRNet'), data_preprocessor=dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], std=[ 58.395, 57.12, 57.375, ], type='PoseDataPreprocessor'), head=dict( decoder=dict( heatmap_size=( 72, 96, ), input_size=( 288, 384, ), sigma=3, type='MSRAHeatmap', unbiased=True), deconv_out_channels=None, in_channels=48, loss=dict(type='KeypointMSELoss', use_target_weight=True), out_channels=52, type='HeatmapHead'), test_cfg=dict(flip_mode='heatmap', flip_test=True, shift_heatmap=True), type='TopdownPoseEstimator') test_dataloader = dict( batch_size=32, dataset=dict( data_mode='topdown', data_prefix=dict(img=''), data_root='', pipeline=[ dict(type='LoadImage'), dict(type='GetBBoxCenterScale'), dict(input_size=( 288, 384, ), type='TopdownAffine'), dict(type='PackPoseInputs'), ], test_mode=True, type='CocoDataset', used_data_keys=[ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle', 'sternum', 'rshoulder', 'lshoulder', 'r_lelbow', 'l_lelbow', 'r_melbow', 'l_melbow', 'r_lwrist', 'l_lwrist', 'r_mwrist', 'l_mwrist', 'r_ASIS', 'l_ASIS', 'r_PSIS', 'l_PSIS', 'r_knee', 'l_knee', 'r_mknee', 'l_mknee', 'r_ankle', 'l_ankle', 'r_mankle', 'l_mankle', 'r_5meta', 'l_5meta', 'r_toe', 'l_toe', 'r_big_toe', 'l_big_toe', 'l_calc', 'r_calc', 'C7', 'L2', 'T11', 'T6', ]), drop_last=False, num_workers=4, persistent_workers=True, sampler=dict(round_up=False, shuffle=False, type='DefaultSampler')) visualizer = dict( name='visualizer', type='PoseLocalVisualizer', vis_backends=[ dict(type='LocalVisBackend'), ])