import torch from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel from torch import nn from itertools import chain from torch.nn import MSELoss, CrossEntropyLoss from cleantext import clean from num2words import num2words import re import string punct_chars = list((set(string.punctuation) | {'’', '‘', '–', '—', '~', '|', '“', '”', '…', "'", "`", '_'})) punct_chars.sort() punctuation = ''.join(punct_chars) replace = re.compile('[%s]' % re.escape(punctuation)) MATH_PREFIXES = [ "sum", "arc", "mass", "digit", "graph", "liter", "gram", "add", "angle", "scale", "data", "array", "ruler", "meter", "total", "unit", "prism", "median", "ratio", "area", ] MATH_WORDS = [ "absolute value", "algebra", "area", "average", "base of", "box plot", "categorical", "coefficient", "common factor", "common multiple", "compose", "coordinate", "cubed", "decompose", "dependent variable", "distribution", "dot plot", "double number line diagram", "equivalent", "equivalent expression", "ratio", "exponent", "frequency", "greatest common factor", "gcd", "height of", "histogram", "independent variable", "integer", "interquartile range", "iqr", "least common multiple", "long division", "mean absolute deviation", "median", "negative number", "opposite vertex", "parallelogram", "percent", "polygon", "polyhedron", "positive number", "prism", "pyramid", "quadrant", "quadrilateral", "quartile", "rational number", "reciprocal", "equality", "inequality", "squared", "statistic", "surface area", "identity property", "addend", "unit", "number sentence", "make ten", "take from ten", "number bond", "total", "estimate", "hashmark", "meter", "number line", "ruler", "centimeter", "base ten", "expanded form", "hundred", "thousand", "place value", "number disk", "standard form", "unit form", "word form", "tens place", "algorithm", "equation", "simplif", "addition", "subtract", "array", "even number", "odd number", "repeated addition", "tessellat", "whole number", "number path", "rectangle", "square", "bar graph", "data", "degree", "line plot", "picture graph", "scale", "survey", "thermometer", "estimat", "tape diagram", "value", "analog", "angle", "parallel", "partition", "pentagon", "right angle", "cube", "digital", "quarter of", "tangram", "circle", "hexagon", "half circle", "half-circle", "quarter circle", "quarter-circle", "semicircle", "semi-circle", "rectang", "rhombus", "trapezoid", "triangle", "commutative", "equal group", "distributive", "divide", "division", "multipl", "parentheses", "quotient", "rotate", "unknown", "add", "capacity", "continuous", "endpoint", "gram", "interval", "kilogram", "volume", "liter", "milliliter", "approximate", "area model", "square unit", "unit square", "geometr", "equivalent fraction", "fraction form", "fractional unit", "unit fraction", "unit interval", "measur", "graph", "scaled graph", "diagonal", "perimeter", "regular polygon", "tessellate", "tetromino", "heptagon", "octagon", "digit", "expression", "sum", "kilometer", "mass", "mixed unit", "length", "measure", "simplify", "associative", "composite", "divisible", "divisor", "partial product", "prime number", "remainder", "acute", "arc", "collinear", "equilateral", "intersect", "isosceles", "symmetry", "line segment", "line", "obtuse", "perpendicular", "protractor", "scalene", "straight angle", "supplementary angle", "vertex", "common denominator", "denominator", "fraction", "mixed number", "numerator", "whole", "decimal expanded form", "decimal", "hundredth", "tenth", "customary system of measurement", "customary unit", "gallon", "metric", "metric unit", "ounce", "pint", "quart", "convert", "distance", "millimeter", "thousandth", "hundredths", "conversion factor", "decimal fraction", "multiplier", "equivalence", "multiple", "product", "benchmark fraction", "cup", "pound", "yard", "whole unit", "decimal divisor", "factors", "bisect", "cubic units", "hierarchy", "unit cube", "attribute", "kite", "bisector", "solid figure", "square units", "dimension", "axis", "ordered pair", "angle measure", "horizontal", "vertical", "categorical data", "lcm", "measure of center", "meters per second", "numerical", "solution", "unit price", "unit rate", "variability", "variable", "abundant number", "accurate", "acre", "addition fact", "algebraic", "altitude", "apex", "arithmetic facts", "associative property", "astronomical unit", "base", "baseline", "billion", "celsius", "census", "cent", "center of a circle", "center of a sphere", "chance", "circle graph", "column", "combine", "common fraction", "comparison diagram", "comparison story", "compass", "complement", "concave polygon", "concentric circles", "consecutive", "constant", "continuous model of area", "continuous model of volume", "contour", "conversion fact", "convex polygon", "counting numbers", "counting up subtraction", "cover-up method", "cross multiplication", "cubic", "cubit", "curved surface", "cylinder", "decagon", "decimeter", "deficient number", "density", "discrete model", "displacement method", "divisibility test", "divisible by", "dodecahedron", "double stem plot", "doubles fact", "egyptian multiplication", "elevation", "embed figure", "end point", "enlarge", "equal", "equal groups", "equal parts", "equidistant marks", "equilateral polygon", "equivalent fractions", "european subtraction", "expanded notation", "expected outcome", "exponential", "extended facts", "fact power", "fact triangle", "factor", "factors of numbers", "fahrenheit", "false number sentence", "figurate numbers", "flowchart", "fluid ounce", "fractional part", "fulcrum", "function machine", "furlong", "genus", "geoboard", "geometric solid", "geometry template", "girth", "golden ratio", "golden rectangle", "graph key", "grouping symbol", "hemisphere", "icosahedron", "improper fraction", "inch", "index of locations", "indirect measurement", "input", "inscribed polygon", "instance of a pattern", "interior of a figure", "interpolate", "irrational", "isometry transformation", "isosceles trapezoid", "juxtapose", "key sequence", "label", "landmark", "latitude", "lattice multiplication", "left to right subtraction", "leg of a right triangle", "like terms", "line graph", "line of reflection", "line of symmetry", "line symmetry", "lines of latitude", "lines of longitude", "longitude", "magnitude estimate", "map legend", "map scale", "maximum", "measurement division", "measurement unit", "meridian bar", "metric system", "midpoint", "mile", "millisecond", "minimum", "minuend", "mirror image", "mobius", "modal", "multiplication counting principle", "multiplication diagram", "multiplication fact", "multiplication symbols", "multiplication use class", "negative rational numbers", "nested parentheses", "net score", "net weight", "nonagon", "nonconvex polygon", "normal span", "number grid", "number sequence", "numeral", "numeration", "octahedron", "open proportion", "operation", "operation symbol", "opposite angle", "opposite change rule", "opposite of a number", "opposite side", "order of magnitude", "order of operations", "order of rotation symmetry", "ordinal number", "pan balance", "parabola", "parallel lines", "parallel planes", "part to part ratio", "part to whole ratio", "part whole fraction", "partial differences subtraction", "partial products multiplication", "partial quotients division", "partial sums addition", "partitive division", "parts and total diagram", "per capita", "per unit rate", "percent circle", "perfect number", "perpetual calendar", "pie graph", "plane", "plane figure", "point symmetry", "population density", "precise", "predict", "prediction line", "preimage", "prime factorization", "prime meridian", "probability", "probability meter", "probability tree diagram", "proper factor", "proper fraction", "property", "quadrangle", "quick common denominator", "quotitive division", "random draw", "random experiment", "random number", "random sample", "rank", "rate diagram", "rate multiplication ", "rate unit", "recall survey", "rectangular array", "rectangular coordinate grid", "rectangular prism", "rectangular pyramid", "rectilinear figure", "reflection", "reflex angle", "regular polyhedron", "regular tessellation", "relation symbol", "revolution", "right cone", "right cylinder", "right prism", "right pyramid", "right triangle", "roman numerals", "rotation symmetry", "same change rule for subtraction", "scale model", "scale of a map", "scale of a number line", "sector", "segment", "sequence", "significant digits", "similar figures", "simpler form", "situtation diagram", "skew lines", "slanted", "slide rule", "span", "stacked bar graph", "standard unit", "stem and leaf plot", "step graph", "straightedge", "substitute", "subtrahend", "surface", "symmetric", "tally", "tangent", "tangent circles", "temperature", "template", "tetrahedron", "theorem", "tile", "tiling", "time graph", "timeline", "top heavy fraction", "topological", "topology", "trade first subtraction", "tree diagram", "triangular", "true number sentence", "truncate", "twin primes", "unlike denominators", "unlike fractions", "vanishing ", "venn diagram", "vernal equinox", "weight", "width", "base of a prism", "base of a pyramid", "face", "numerical data", "opposite", "pace", "per", "region", "sign", "alternate interior angles", "base of an exponent", "cone", "congruent", "counterclockwise", "cube root", "hypotenuse", "irrational number", "linear relationship", "positive association", "rate of change", "translation", "transversal", "circumference", "corresponding", "expand", "population", "proportion", "radius", "random", "repeating decimal", "representative", "scaled", "withdrawal", "center", "edge", "height of a parallelogram or triangle", "net", "speed", "table", "term", "adjacent", "complementary", "cross-section", "cross section", "deposit", "event", "measurement error", "proportional", "simulation", "center of a dilation", "clockwise", "dilation", "function", "negative association", "pythagorean theorem", "relative frequency", "rigid transformation", "scale factor", "scatter plot", "similar", "sphere", "two-way table", "additive identity", "additive inverse", "box and whisker plot", "cartesian coordinates", "central angle", "chord", "combination", "commutative property", "coplanar", "cross product", "dependent events", "difference", "dividend", "equilateral triangle", "error of measurement", "factorial", "formula", "identity property of", "independent events", "infinity", "inscribed angle", "intercept", "intercepted arc", "inverse", "inverse operations", "isosceles triangle", "least common denominator", "like fractions", "locus", "logic", "lowest terms", "mode", "multiplicative identity", "multiplicative inverse", "mutually exclusive events", "natural numbers", "normal", "permutation", "pi", "point", "power", "range", "rate", "ray", "real numbers", "rectangular", "root", "rotation", "scalene triangle", "scattergram", "set", "statistics", "terminating decimal", "transformation", "x intercept", "x-axis", "x-intercept", "y intercept", "y-axis", "y-intercept", "zero", "zero property of multiplication", "base of a parallelogram", "base of a triangle", "height", "chance experiment", "diameter", "mean", "percentage", "sample", "legs", "outlier", "slope", "square root", "system of equations", "tessellation", ] def get_num_words(text): if not isinstance(text, str): print("%s is not a string" % text) text = replace.sub(' ', text) text = re.sub(r'\s+', ' ', text) text = text.strip() text = re.sub(r'\[.+\]', " ", text) return len(text.split()) def number_to_words(num): try: return num2words(re.sub(",", "", num)) except: return num clean_str = lambda s: clean(s, fix_unicode=True, # fix various unicode errors to_ascii=True, # transliterate to closest ASCII representation lower=True, # lowercase text no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them no_urls=True, # replace all URLs with a special token no_emails=True, # replace all email addresses with a special token no_phone_numbers=True, # replace all phone numbers with a special token no_numbers=True, # replace all numbers with a special token no_digits=False, # replace all digits with a special token no_currency_symbols=False, # replace all currency symbols with a special token no_punct=False, # fully remove punctuation replace_with_url="", replace_with_email="", replace_with_phone_number="", replace_with_number=lambda m: number_to_words(m.group()), replace_with_digit="0", replace_with_currency_symbol="", lang="en" ) clean_str_nopunct = lambda s: clean(s, fix_unicode=True, # fix various unicode errors to_ascii=True, # transliterate to closest ASCII representation lower=True, # lowercase text no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them no_urls=True, # replace all URLs with a special token no_emails=True, # replace all email addresses with a special token no_phone_numbers=True, # replace all phone numbers with a special token no_numbers=True, # replace all numbers with a special token no_digits=False, # replace all digits with a special token no_currency_symbols=False, # replace all currency symbols with a special token no_punct=True, # fully remove punctuation replace_with_url="", replace_with_email="", replace_with_phone_number="", replace_with_number=lambda m: number_to_words(m.group()), replace_with_digit="0", replace_with_currency_symbol="", lang="en" ) class MultiHeadModel(BertPreTrainedModel): """Pre-trained BERT model that uses our loss functions""" def __init__(self, config, head2size): super(MultiHeadModel, self).__init__(config, head2size) config.num_labels = 1 self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) module_dict = {} for head_name, num_labels in head2size.items(): module_dict[head_name] = nn.Linear(config.hidden_size, num_labels) self.heads = nn.ModuleDict(module_dict) self.init_weights() def forward(self, input_ids, token_type_ids=None, attention_mask=None, head2labels=None, return_pooler_output=False, head2mask=None, nsp_loss_weights=None): device = "cuda" if torch.cuda.is_available() else "cpu" # Get logits output = self.bert( input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, output_attentions=False, output_hidden_states=False, return_dict=True) pooled_output = self.dropout(output["pooler_output"]).to(device) head2logits = {} return_dict = {} for head_name, head in self.heads.items(): head2logits[head_name] = self.heads[head_name](pooled_output) head2logits[head_name] = head2logits[head_name].float() return_dict[head_name + "_logits"] = head2logits[head_name] if head2labels is not None: for head_name, labels in head2labels.items(): num_classes = head2logits[head_name].shape[1] # Regression (e.g. for politeness) if num_classes == 1: # Only consider positive examples if head2mask is not None and head_name in head2mask: num_positives = head2labels[head2mask[head_name]].sum() # use certain labels as mask if num_positives == 0: return_dict[head_name + "_loss"] = torch.tensor([0]).to(device) else: loss_fct = MSELoss(reduction='none') loss = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1)) return_dict[head_name + "_loss"] = loss.dot(head2labels[head2mask[head_name]].float().view(-1)) / num_positives else: loss_fct = MSELoss() return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1)) else: loss_fct = CrossEntropyLoss(weight=nsp_loss_weights.float()) return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name], labels.view(-1)) if return_pooler_output: return_dict["pooler_output"] = output["pooler_output"] return return_dict class InputBuilder(object): """Base class for building inputs from segments.""" def __init__(self, tokenizer): self.tokenizer = tokenizer self.mask = [tokenizer.mask_token_id] def build_inputs(self, history, reply, max_length): raise NotImplementedError def mask_seq(self, sequence, seq_id): sequence[seq_id] = self.mask return sequence @classmethod def _combine_sequence(self, history, reply, max_length, flipped=False): # Trim all inputs to max_length history = [s[:max_length] for s in history] reply = reply[:max_length] if flipped: return [reply] + history return history + [reply] class BertInputBuilder(InputBuilder): """Processor for BERT inputs""" def __init__(self, tokenizer): InputBuilder.__init__(self, tokenizer) self.cls = [tokenizer.cls_token_id] self.sep = [tokenizer.sep_token_id] self.model_inputs = ["input_ids", "token_type_ids", "attention_mask"] self.padded_inputs = ["input_ids", "token_type_ids"] self.flipped = False def build_inputs(self, history, reply, max_length, input_str=True): """See base class.""" if input_str: history = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(t)) for t in history] reply = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(reply)) sequence = self._combine_sequence(history, reply, max_length, self.flipped) sequence = [s + self.sep for s in sequence] sequence[0] = self.cls + sequence[0] instance = {} instance["input_ids"] = list(chain(*sequence)) last_speaker = 0 other_speaker = 1 seq_length = len(sequence) instance["token_type_ids"] = [last_speaker if ((seq_length - i) % 2 == 1) else other_speaker for i, s in enumerate(sequence) for _ in s] return instance