--- library_name: transformers tags: - masked-image-modeling - generated_from_trainer --- # smb-vision-base-1029 This model is trained from scratch using [VideoMAE](https://huggingface.co/docs/transformers/en/model_doc/videomae) on over 4.7k CT volumes. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-04 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 30.0 ### Training results { "_runtime": 54805.860011105, "_step": 4351, "eval/runtime": 17.8428, "eval/samples_per_second": 2.578, "eval/steps_per_second": 2.578, "total_flos": 3.8084565648770335e+21, "train/epoch": 30, "train/global_step": 4350, "train/grad_norm": 0.0735374316573143, "train/learning_rate": 0, "train/loss": 0.5736, "train_loss": 0.5022664608695041, "train_runtime": 54785.1298, "train_samples_per_second": 2.527, "train_steps_per_second": 0.079 } ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0 - Datasets 3.0.2 - Tokenizers 0.20.1 ### How to use ```python # load data using `dataload.py` model = VideoMAEForPreTraining.from_pretrained( standardmodelbio/smb-vision-base, trust_remote_code=True, ) embedding = model.videomae(batch["image"]) ```