--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: edu-modernbert results: [] --- # edu-modernbert This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2864 - Precision: 0.5389 - Recall: 0.3949 - F1: 0.4305 - Accuracy: 0.6820 - Binary Precision: 0.7559 - Binary Recall: 0.4496 - Binary F1: 0.5638 - Binary Accuracy: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1024 - eval_batch_size: 512 - seed: 0 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Binary Precision | Binary Recall | Binary F1 | Binary Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:----------------:|:-------------:|:---------:|:---------------:| | No log | 0 | 0 | 2.4591 | 0.1116 | 0.1645 | 0.0484 | 0.1386 | 0.0 | 0.0 | 0.0 | 0.9098 | | 0.3196 | 2.4331 | 1000 | 0.3097 | 0.5201 | 0.3691 | 0.3946 | 0.6587 | 0.7614 | 0.3580 | 0.4870 | 0.9320 | | 0.3064 | 4.8662 | 2000 | 0.3067 | 0.5273 | 0.3882 | 0.4154 | 0.6599 | 0.7391 | 0.4375 | 0.5496 | 0.9353 | | 0.3088 | 7.2993 | 3000 | 0.2951 | 0.5353 | 0.3833 | 0.4169 | 0.6744 | 0.7656 | 0.4007 | 0.5261 | 0.9349 | | 0.2991 | 9.7324 | 4000 | 0.2975 | 0.5421 | 0.3921 | 0.4234 | 0.6699 | 0.7316 | 0.4643 | 0.5681 | 0.9363 | | 0.2957 | 12.1655 | 5000 | 0.2920 | 0.5362 | 0.3859 | 0.4207 | 0.6813 | 0.7811 | 0.3953 | 0.5249 | 0.9355 | | 0.2932 | 14.5985 | 6000 | 0.2881 | 0.5364 | 0.3946 | 0.4298 | 0.6824 | 0.7591 | 0.4351 | 0.5532 | 0.9366 | | 0.2862 | 17.0316 | 7000 | 0.2876 | 0.5411 | 0.3850 | 0.4213 | 0.6829 | 0.7713 | 0.4104 | 0.5358 | 0.9359 | | 0.2894 | 19.4647 | 8000 | 0.2864 | 0.5389 | 0.3949 | 0.4305 | 0.6820 | 0.7559 | 0.4496 | 0.5638 | 0.9373 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0