---
base_model: srikarvar/fine_tuned_model_14
datasets:
- sentence-transformers/stsb
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
widget:
- source_sentence: The man talked to a girl over the internet camera.
sentences:
- A group of elderly people pose around a dining table.
- A teenager talks to a girl over a webcam.
- There is no 'still' that is not relative to some other object.
- source_sentence: A woman is writing something.
sentences:
- Two eagles are perched on a branch.
- It refers to the maximum f-stop (which is defined as the ratio of focal length
to effective aperture diameter).
- A woman is chopping green onions.
- source_sentence: The player shoots the winning points.
sentences:
- Minimum wage laws hurt the least skilled, least productive the most.
- The basketball player is about to score points for his team.
- Sheep are grazing in the field in front of a line of trees.
- source_sentence: Stars form in star-formation regions, which itself develop from
molecular clouds.
sentences:
- Although I believe Searle is mistaken, I don't think you have found the problem.
- It may be possible for a solar system like ours to exist outside of a galaxy.
- A blond-haired child performing on the trumpet in front of a house while his younger
brother watches.
- source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
consort, the King has always been the sovereign.
sentences:
- At first, I thought this is a bit of a tricky question.
- A man sitting on the floor in a room is strumming a guitar.
- There is a very good reason not to refer to the Queen's spouse as "King" - because
they aren't the King.
model-index:
- name: SentenceTransformer based on srikarvar/fine_tuned_model_14
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.889793665485415
name: Pearson Cosine
- type: spearman_cosine
value: 0.8883233702954302
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8793654739739823
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8869417782770835
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8805966685936737
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8883233702954302
name: Spearman Euclidean
- type: pearson_dot
value: 0.889793669321279
name: Pearson Dot
- type: spearman_dot
value: 0.8883229609391554
name: Spearman Dot
- type: pearson_max
value: 0.889793669321279
name: Pearson Max
- type: spearman_max
value: 0.8883233702954302
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8584930609199624
name: Pearson Cosine
- type: spearman_cosine
value: 0.8582999046265778
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8554072155842902
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8574561907026155
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8560078981251059
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8582999046265778
name: Spearman Euclidean
- type: pearson_dot
value: 0.8584930626613443
name: Pearson Dot
- type: spearman_dot
value: 0.8582999046265778
name: Spearman Dot
- type: pearson_max
value: 0.8584930626613443
name: Pearson Max
- type: spearman_max
value: 0.8582999046265778
name: Spearman Max
---
# SentenceTransformer based on srikarvar/fine_tuned_model_14
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [srikarvar/fine_tuned_model_14](https://huggingface.co/srikarvar/fine_tuned_model_14) on the [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [srikarvar/fine_tuned_model_14](https://huggingface.co/srikarvar/fine_tuned_model_14)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_14-sts")
# Run inference
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man sitting on the floor in a room is strumming a guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8898 |
| **spearman_cosine** | **0.8883** |
| pearson_manhattan | 0.8794 |
| spearman_manhattan | 0.8869 |
| pearson_euclidean | 0.8806 |
| spearman_euclidean | 0.8883 |
| pearson_dot | 0.8898 |
| spearman_dot | 0.8883 |
| pearson_max | 0.8898 |
| spearman_max | 0.8883 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8585 |
| **spearman_cosine** | **0.8583** |
| pearson_manhattan | 0.8554 |
| spearman_manhattan | 0.8575 |
| pearson_euclidean | 0.856 |
| spearman_euclidean | 0.8583 |
| pearson_dot | 0.8585 |
| spearman_dot | 0.8583 |
| pearson_max | 0.8585 |
| spearman_max | 0.8583 |
## Training Details
### Training Dataset
#### stsb
* Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
A plane is taking off.
| An air plane is taking off.
| 1.0
|
| A man is playing a large flute.
| A man is playing a flute.
| 0.76
|
| A man is spreading shreded cheese on a pizza.
| A man is spreading shredded cheese on an uncooked pizza.
| 0.76
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### stsb
* Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A man with a hard hat is dancing.
| A man wearing a hard hat is dancing.
| 1.0
|
| A young child is riding a horse.
| A child is riding a horse.
| 0.95
|
| A man is feeding a mouse to a snake.
| The man is feeding a mouse to the snake.
| 1.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters