File size: 20,625 Bytes
16a3ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
## Setup Notes

For this model, a VM with 2 T4 GPUs was used.

To get the training to work on the 2 GPUs (utilize both GPUS simultaneously), the following command was used to initiate training.

WORLD_SIZE=2 CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 finetune.py --base_model 'decapoda-research/llama-7b-hf' --data_path 'b-mc2/sql-create-context' --output_dir './lora-alpaca' --num_epochs 1 --micro_batch_size 16

Note 1. Micro batch size was increased from the default 4 to 16.  Note that increasing it further is possible based on other training that has been performed.  This was a first attempt.

Note 2. Output directory was initially lora-alpaca and then contents were moved to new folder when initializing git repository.


## Log

(sqltest) chrisdono@deep-learning-duo-t4-3:~/alpaca-lora$ WORLD_SIZE=2 CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 finetune.py --base_model 'decapoda-research/lla$
a-7b-hf' --data_path 'b-mc2/sql-create-context' --output_dir './lora-alpaca' --num_epochs 1 --micro_batch_size 16                                                                              
WARNING:torch.distributed.run:                                                                                                                                                                 
*****************************************                                                                                                                                                      
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your appli
cation as needed.                                                                                                                                                                              
*****************************************                                                                                                                                                      
                                                                                                                                                                                               
                                                                                                                                                                                               
===================================BUG REPORT===================================                                                                                                               
Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues                                                                
================================================================================                                                                                                               
===================================BUG REPORT===================================                                                                                                               
Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues                                                                
================================================================================                                                                                                               
/opt/conda/envs/sqltest/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda/envs/sqltest did not contain libcudart.so as expected! Searching further path
s...                                                                                                                                                                                           
  warn(msg)                                                                                                                                                                                    
CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so                                                                                                                        
CUDA SETUP: Highest compute capability among GPUs detected: 7.5                                                                                                                                
CUDA SETUP: Detected CUDA version 113                                                                                                                                                          
CUDA SETUP: Loading binary /opt/conda/envs/sqltest/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda113.so...                                                                     
/opt/conda/envs/sqltest/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda/envs/sqltest did not contain libcudart.so as expected! Searching further path
s...                                                                                                                                                                                           
  warn(msg)                                                                                                                                                                                    
CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so                                                                                                                        
CUDA SETUP: Highest compute capability among GPUs detected: 7.5                                                                                                                                
CUDA SETUP: Detected CUDA version 113                                                                                                                                                          
CUDA SETUP: Loading binary /opt/conda/envs/sqltest/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda113.so...                                                                     
Training Alpaca-LoRA model with params:                                                                                                                                                        
base_model: decapoda-research/llama-7b-hf                                                                                                                                                      
data_path: b-mc2/sql-create-context                                                                                                                                                            
output_dir: ./lora-alpaca                                                                                                                                                                      
batch_size: 128                                                                                                                                                                                
micro_batch_size: 16                                                                                                                                                                           
num_epochs: 1                                                                                                                                                                                  
learning_rate: 0.0003                                                                                                                                                                          
cutoff_len: 256                                                                                                                                                                                
val_set_size: 2000                                                                                                                                                                             
lora_r: 8                                                                                                                                                                                      
lora_alpha: 16                                                                                                                                                                                 
lora_dropout: 0.05                                                                                                                                                                             
lora_target_modules: ['q_proj', 'v_proj']                                                                                                                                                      
train_on_inputs: True
add_eos_token: False
group_by_length: False
wandb_project: 
wandb_run_name: 
wandb_watch: 
wandb_log_model: 
resume_from_checkpoint: False
prompt template: alpaca

Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 33/33 [01:24<00:00,  2.57s/it]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 33/33 [01:24<00:00,  2.57s/it]
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
Found cached dataset json (/home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e
233e6e)
  0%|                                                                                                                                                                    | 0/1 [00:00<?, ?it/s]
Found cached dataset json (/home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e
233e6e)
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00,  9.30it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00,  7.83it/s]
trainable params: 4194304 || all params: 6742609920 || trainable%: 0.06220594176090199
trainable params: 4194304 || all params: 6742609920 || trainable%: 0.06220594176090199
Loading cached split indices for dataset at /home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b
2dd7af1cf934bed8e233e6e/cache-5a5ac0bd39fc20e0.arrow and /home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb5
50cf8797e5a6b2dd7af1cf934bed8e233e6e/cache-782fec259d4b8f6a.arrow
Loading cached split indices for dataset at /home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b
2dd7af1cf934bed8e233e6e/cache-5a5ac0bd39fc20e0.arrow and /home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb5
50cf8797e5a6b2dd7af1cf934bed8e233e6e/cache-782fec259d4b8f6a.arrow
{'loss': 2.7003, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.02}                       
{'loss': 2.566, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.03}                        
{'loss': 2.2648, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.05}                        
{'loss': 1.657, 'learning_rate': 0.00011099999999999999, 'epoch': 0.07}                        
{'loss': 1.1599, 'learning_rate': 0.00014099999999999998, 'epoch': 0.08}                       
{'loss': 0.9037, 'learning_rate': 0.00017099999999999998, 'epoch': 0.1}                        
{'loss': 0.8137, 'learning_rate': 0.000201, 'epoch': 0.12}                                     
{'loss': 0.7827, 'learning_rate': 0.00023099999999999998, 'epoch': 0.13}                       
{'loss': 0.7554, 'learning_rate': 0.000261, 'epoch': 0.15}                                     
{'loss': 0.7357, 'learning_rate': 0.00029099999999999997, 'epoch': 0.17}                       
{'loss': 0.6893, 'learning_rate': 0.0002957831325301205, 'epoch': 0.18}                        
{'loss': 0.6606, 'learning_rate': 0.00028975903614457827, 'epoch': 0.2}                        
{'loss': 0.6506, 'learning_rate': 0.0002837349397590361, 'epoch': 0.22}
{'loss': 0.6462, 'learning_rate': 0.00027771084337349395, 'epoch': 0.23}                                                                                                             [215/1857]
{'loss': 0.6315, 'learning_rate': 0.0002716867469879518, 'epoch': 0.25}                        
{'loss': 0.6337, 'learning_rate': 0.0002656626506024096, 'epoch': 0.27}                        
{'loss': 0.6223, 'learning_rate': 0.00025963855421686746, 'epoch': 0.28}                       
{'loss': 0.6136, 'learning_rate': 0.00025361445783132525, 'epoch': 0.3}                        
{'loss': 0.6198, 'learning_rate': 0.00024759036144578314, 'epoch': 0.32}                       
{'loss': 0.6084, 'learning_rate': 0.00024156626506024095, 'epoch': 0.33}                       
{'eval_loss': 0.608456552028656, 'eval_runtime': 123.856, 'eval_samples_per_second': 16.148, 'eval_steps_per_second': 1.009, 'epoch': 0.33}                                                    
{'loss': 0.6021, 'learning_rate': 0.00023554216867469876, 'epoch': 0.35}                       
{'loss': 0.5949, 'learning_rate': 0.0002295180722891566, 'epoch': 0.37}                        
{'loss': 0.5972, 'learning_rate': 0.00022349397590361444, 'epoch': 0.38}                       
{'loss': 0.5922, 'learning_rate': 0.00021746987951807228, 'epoch': 0.4}                        
{'loss': 0.5876, 'learning_rate': 0.0002114457831325301, 'epoch': 0.42}                        
{'loss': 0.5788, 'learning_rate': 0.00020542168674698793, 'epoch': 0.43}                       
{'loss': 0.5894, 'learning_rate': 0.0001993975903614458, 'epoch': 0.45}                        
{'loss': 0.5877, 'learning_rate': 0.0001933734939759036, 'epoch': 0.47}                        
{'loss': 0.5835, 'learning_rate': 0.00018734939759036142, 'epoch': 0.48}                       
{'loss': 0.5791, 'learning_rate': 0.00018132530120481925, 'epoch': 0.5}                        
{'loss': 0.5841, 'learning_rate': 0.00017530120481927712, 'epoch': 0.52}                       
{'loss': 0.5728, 'learning_rate': 0.00016927710843373493, 'epoch': 0.53}                       
{'loss': 0.569, 'learning_rate': 0.00016325301204819274, 'epoch': 0.55}                        
{'loss': 0.5709, 'learning_rate': 0.00015722891566265058, 'epoch': 0.57}                       
{'loss': 0.5762, 'learning_rate': 0.00015120481927710845, 'epoch': 0.58}                       
{'loss': 0.5704, 'learning_rate': 0.00014518072289156626, 'epoch': 0.6}                        
{'loss': 0.5661, 'learning_rate': 0.0001391566265060241, 'epoch': 0.62}                        
{'loss': 0.5662, 'learning_rate': 0.00013313253012048193, 'epoch': 0.63}                       
{'loss': 0.5674, 'learning_rate': 0.00012710843373493975, 'epoch': 0.65}                       
{'loss': 0.5635, 'learning_rate': 0.00012108433734939758, 'epoch': 0.67}                       
{'eval_loss': 0.568750262260437, 'eval_runtime': 122.9061, 'eval_samples_per_second': 16.273, 'eval_steps_per_second': 1.017, 'epoch': 0.67}                                                   
{'loss': 0.5609, 'learning_rate': 0.00011506024096385541, 'epoch': 0.69}                       
{'loss': 0.5724, 'learning_rate': 0.00010903614457831325, 'epoch': 0.7}                        
{'loss': 0.5603, 'learning_rate': 0.00010301204819277107, 'epoch': 0.72}                       
{'loss': 0.5599, 'learning_rate': 9.698795180722891e-05, 'epoch': 0.74}                        
{'loss': 0.5655, 'learning_rate': 9.096385542168674e-05, 'epoch': 0.75}                        
{'loss': 0.5578, 'learning_rate': 8.493975903614457e-05, 'epoch': 0.77}                        
{'loss': 0.5577, 'learning_rate': 7.89156626506024e-05, 'epoch': 0.79}                         
{'loss': 0.5606, 'learning_rate': 7.289156626506024e-05, 'epoch': 0.8}                         
{'loss': 0.5496, 'learning_rate': 6.686746987951806e-05, 'epoch': 0.82}                        
{'loss': 0.5635, 'learning_rate': 6.08433734939759e-05, 'epoch': 0.84}                         
{'loss': 0.5522, 'learning_rate': 5.481927710843373e-05, 'epoch': 0.85}                        
{'loss': 0.5572, 'learning_rate': 4.879518072289156e-05, 'epoch': 0.87}                        
{'loss': 0.5454, 'learning_rate': 4.2771084337349395e-05, 'epoch': 0.89}                       
{'loss': 0.5485, 'learning_rate': 3.6746987951807227e-05, 'epoch': 0.9}                        
{'loss': 0.5592, 'learning_rate': 3.072289156626506e-05, 'epoch': 0.92}                        
{'loss': 0.5499, 'learning_rate': 2.469879518072289e-05, 'epoch': 0.94}                        
{'loss': 0.55, 'learning_rate': 1.867469879518072e-05, 'epoch': 0.95}
{'loss': 0.5511, 'learning_rate': 1.2650602409638553e-05, 'epoch': 0.97}                       
{'loss': 0.5531, 'learning_rate': 6.626506024096385e-06, 'epoch': 0.99}                        
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 598/598 [4:45:30<00:00, 27.59s/it]
{'train_runtime': 17131.1027, 'train_samples_per_second': 4.47, 'train_steps_per_second': 0.035, 'train_loss': 0.7246327424129116, 'epoch': 1.0}                                               
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 598/598 [4:45:30<00:00, 28.65s/it]