--- library_name: transformers base_model: microsoft/wavlm-base tags: - generated_from_trainer model-index: - name: wavlm-emotion results: [] --- # wavlm-emotion This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 96 | 1.9509 | | 1.9473 | 2.0 | 192 | 1.9486 | | 1.9469 | 3.0 | 288 | 1.9512 | | 1.9469 | 4.0 | 384 | 1.9495 | | 1.9471 | 5.0 | 480 | 1.9488 | | 1.9468 | 6.0 | 576 | 1.9474 | | 1.9478 | 7.0 | 672 | 1.9510 | | 1.9487 | 8.0 | 768 | 1.9510 | | 1.9487 | 9.0 | 864 | 1.9466 | | 1.9471 | 10.0 | 960 | 1.9465 | | 1.9471 | 11.0 | 1056 | 1.9505 | | 1.9477 | 12.0 | 1152 | 1.9467 | | 1.9479 | 13.0 | 1248 | 1.9465 | | 1.948 | 14.0 | 1344 | 1.9439 | | 1.9473 | 15.0 | 1440 | 1.9488 | | 1.9488 | 16.0 | 1536 | 1.9432 | | 1.9472 | 17.0 | 1632 | 1.9491 | | 1.9465 | 18.0 | 1728 | 1.9461 | | 1.9468 | 19.0 | 1824 | 1.9507 | | 1.9481 | 20.0 | 1920 | 1.9480 | | 1.9471 | 21.0 | 2016 | 1.9442 | | 1.9477 | 22.0 | 2112 | 1.9466 | | 1.9474 | 23.0 | 2208 | 1.9504 | | 1.9468 | 24.0 | 2304 | 1.9496 | | 1.9476 | 25.0 | 2400 | 1.9464 | | 1.9476 | 26.0 | 2496 | 1.9466 | | 1.9471 | 27.0 | 2592 | 1.9473 | | 1.9467 | 28.0 | 2688 | 1.9485 | | 1.9468 | 29.0 | 2784 | 1.9477 | | 1.9471 | 30.0 | 2880 | 1.9484 | | 1.9458 | 31.0 | 2976 | 1.9472 | | 1.9476 | 32.0 | 3072 | 1.9475 | | 1.9468 | 33.0 | 3168 | 1.9482 | | 1.9468 | 34.0 | 3264 | 1.9495 | | 1.9463 | 35.0 | 3360 | 1.9497 | | 1.9474 | 36.0 | 3456 | 1.9490 | | 1.9462 | 37.0 | 3552 | 1.9481 | | 1.9458 | 38.0 | 3648 | 1.9490 | | 1.9461 | 39.0 | 3744 | 1.9486 | | 1.9446 | 40.0 | 3840 | 1.9488 | | 1.946 | 41.0 | 3936 | 1.9490 | | 1.9467 | 42.0 | 4032 | 1.9487 | | 1.9466 | 43.0 | 4128 | 1.9485 | | 1.9463 | 44.0 | 4224 | 1.9486 | | 1.9459 | 45.0 | 4320 | 1.9486 | | 1.9458 | 46.0 | 4416 | 1.9487 | | 1.9464 | 47.0 | 4512 | 1.9485 | | 1.946 | 48.0 | 4608 | 1.9485 | | 1.9459 | 49.0 | 4704 | 1.9485 | | 1.9459 | 50.0 | 4800 | 1.9485 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0