--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-neg-tags results: [] --- # roberta-large-neg-tags This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0016 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.0143 | 1.0 | 938 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.9995 | | 0.0033 | 2.0 | 1876 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.9996 | | 0.0039 | 3.0 | 2814 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.9997 | | 0.0012 | 4.0 | 3752 | 0.0016 | 0.0 | 0.0 | 0.0 | 0.9997 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.1 - Datasets 2.6.1 - Tokenizers 0.13.1