--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-condaqa-neg-tag-token-classifier results: [] --- # roberta-large-condaqa-neg-tag-token-classifier This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0267 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 6 | 0.0868 | 0.0 | 0.0 | 0.0 | 0.9762 | | No log | 2.0 | 12 | 0.0533 | 0.0 | 0.0 | 0.0 | 0.9762 | | No log | 3.0 | 18 | 0.0303 | 0.0 | 0.0 | 0.0 | 0.9878 | | No log | 4.0 | 24 | 0.0267 | 0.0 | 0.0 | 0.0 | 0.9886 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.1 - Datasets 2.6.1 - Tokenizers 0.13.1