--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: modernbert-wine-classification results: [] --- # modernbert-wine-classification This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1409 - Accuracy: 0.7115 - F1: 0.7184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 5.0513 | 0.3333 | 226 | 4.6666 | 0.0150 | 0.0139 | | 2.9839 | 0.6667 | 452 | 2.4637 | 0.2933 | 0.3601 | | 2.0766 | 1.0 | 678 | 1.8938 | 0.4410 | 0.5005 | | 1.5464 | 1.3333 | 904 | 1.6542 | 0.4547 | 0.5265 | | 1.4301 | 1.6667 | 1130 | 1.4822 | 0.4976 | 0.5625 | | 1.2864 | 2.0 | 1356 | 1.3587 | 0.4388 | 0.5155 | | 0.7659 | 2.3333 | 1582 | 1.2553 | 0.5637 | 0.6038 | | 0.7489 | 2.6667 | 1808 | 1.1776 | 0.5639 | 0.6072 | | 0.658 | 3.0 | 2034 | 1.1178 | 0.5851 | 0.6249 | | 0.3545 | 3.3333 | 2260 | 1.0968 | 0.6086 | 0.6372 | | 0.3468 | 3.6667 | 2486 | 1.1013 | 0.6502 | 0.6693 | | 0.3072 | 4.0 | 2712 | 1.0774 | 0.6637 | 0.6816 | | 0.1741 | 4.3333 | 2938 | 1.1204 | 0.6946 | 0.7043 | | 0.1531 | 4.6667 | 3164 | 1.1361 | 0.7065 | 0.7134 | | 0.1556 | 5.0 | 3390 | 1.1409 | 0.7115 | 0.7184 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0