zurin14's picture
Update app.py
ab96885 verified
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration, BartTokenizer, BartForConditionalGeneration
import requests
from bs4 import BeautifulSoup
import gtts
from io import BytesIO
import base64
import os
# Function to fetch text from a URL
def fetch_text_from_url(url):
try:
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
paragraphs = soup.find_all('p')
text = ' '.join([para.get_text() for para in paragraphs])
return text, None
except Exception as e:
return None, f"Error fetching URL: {e}"
# Function to summarize text using T5
# Function to summarize text using T5
def summarize_t5(text, size):
model_name = "C:\\Users\\zurin\\Desktop\\text summarization\\fine_tuned_t52"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
input_text = f"summarize: {text}"
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
# Define length parameters
if size == "Short":
min_len, max_len = 30, 50
elif size == "Medium":
min_len, max_len = 50, 100
else: # Long
min_len, max_len = 100, 200
summary_ids = model.generate(
inputs["input_ids"],
max_length=max_len,
min_length=min_len, # Use the specified min_length instead of fixed 10
length_penalty=1.0, # Reduced from 2.0 to allow more length variation
num_beams=4,
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# Function to summarize text using BART
def summarize_bart(text, size):
model_name = "C:\\Users\\zurin\\Desktop\\text summarization\\fine_tuned_bart"
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
# Define length parameters
if size == "Short":
min_len, max_len = 30, 50
elif size == "Medium":
min_len, max_len = 50, 100
else: # Long
min_len, max_len = 100, 200
summary_ids = model.generate(
inputs["input_ids"],
max_length=max_len,
min_length=min_len,
length_penalty=0.8, # Reduced from 1.0 to encourage length variation
num_beams=6,
no_repeat_ngram_size=2, # Added to prevent repetition
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# Function to convert text to speech and save as a file
def text_to_speech(text):
tts = gtts.gTTS(text)
audio_file_path = "summary_audio.mp3"
tts.save(audio_file_path)
return audio_file_path
# Main function to handle summarization
def summarize_news(input_type, text_input, url_input, model_choice, size_choice):
# Determine the input text based on the input type
if input_type == "Text":
if not text_input:
return "Please provide text to summarize.", None, None
input_text = text_input
else: # URL
if not url_input:
return "Please provide a URL to summarize.", None, None
input_text, error = fetch_text_from_url(url_input)
if error:
return error, None, None
# Summarize the text
if model_choice == "T5":
summary = summarize_t5(input_text, size_choice)
else: # BART
summary = summarize_bart(input_text, size_choice)
# Generate audio for the summary
audio_file = text_to_speech(summary)
return summary, audio_file, None
# Custom CSS for the design
custom_css = """
<style>
/* Background for the entire app */
body {
background: linear-gradient(135deg, #E6E6FA 0%, #D8BFD8 100%) !important;
font-family: 'Arial', sans-serif;
min-height: 100vh;
margin: 0;
display: flex;
justify-content: center;
align-items: center;
}
/* White container for all elements */
.container {
background-color: #FFFFFF !important;
border-radius: 15px !important;
padding: 30px !important;
margin: 20px auto !important;
max-width: 800px !important;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1) !important;
width: 100%;
}
/* Title styling */
.title {
font-size: 36px;
color: #000000 !important;
text-align: center;
font-weight: bold;
margin-bottom: 10px;
}
/* Subtitle styling */
.subtitle {
font-size: 18px;
color: #000000 !important;
text-align: center;
margin-bottom: 20px;
}
/* Labels for inputs */
label {
color: #000000 !important;
}
/* Input and textarea styling */
input, textarea {
background-color: #F5F5F5 !important;
color: #000000 !important;
border: 1px solid #D3D3D3 !important;
border-radius: 5px !important;
}
/* Dropdown styling */
select {
background-color: #F5F5F5 !important;
color: #000000 !important;
border: 1px solid #D3D3D3 !important;
border-radius: 5px !important;
padding: 5px !important;
}
/* Button styling */
button {
background-color: #9370DB !important;
color: white !important;
border-radius: 10px !important;
padding: 8px 20px !important;
border: none !important;
display: block !important;
margin: 20px auto !important;
cursor: pointer !important;
}
button:hover {
background-color: #4B0082 !important;
}
/* Footer styling */
.footer {
text-align: center;
color: #000000 !important;
font-size: 14px;
margin-top: 30px;
}
.footer-heart {
color: #FF0000 !important;
}
/* Output text and error messages */
.output-text, .error-text {
color: #000000 !important;
}
</style>
"""
# Gradio app
with gr.Blocks() as app:
# Inject custom CSS
gr.HTML(custom_css)
# Main container
with gr.Column(elem_classes=["container"]):
# Title and subtitle
gr.HTML('<p class="title">BBC News Summarizer</p>')
gr.HTML('<p class="subtitle">Summarize news articles with T5 or BART in your preferred length!</p>')
# Input section
input_type = gr.Radio(choices=["Text", "URL"], label="Choose input type:", value="Text")
with gr.Row():
text_input = gr.Textbox(label="Enter news text here:", lines=5, visible=True, placeholder="Paste your news text here...")
url_input = gr.Textbox(label="Enter news URL here:", visible=False, placeholder="Enter a news article URL...")
# Show/hide text input or URL input based on input type
def update_input_visibility(input_type):
return (
gr.update(visible=(input_type == "Text")),
gr.update(visible=(input_type == "URL"))
)
input_type.change(
fn=update_input_visibility,
inputs=input_type,
outputs=[text_input, url_input]
)
# Model selection
model_choice = gr.Dropdown(choices=["T5", "BART"], label="Choose summarization model:", value="T5")
# Summary size selection
size_choice = gr.Dropdown(choices=["Short", "Medium", "Long"], label="Choose summary size:", value="Short")
# Summarize button
summarize_button = gr.Button("Get Summary")
# Outputs
summary_output = gr.Textbox(label="Summary:", elem_classes=["output-text"])
audio_output = gr.Audio(label="Listen to the Summary:")
error_output = gr.Textbox(label="Error:", elem_classes=["error-text"], visible=False)
# Footer
gr.HTML('<p class="footer">Powered by xAI\'s Grok | Made with <span class="footer-heart">❤️</span> for news enthusiasts</p>')
# Button click event
summarize_button.click(
fn=summarize_news,
inputs=[input_type, text_input, url_input, model_choice, size_choice],
outputs=[summary_output, audio_output, error_output]
)
# Launch the app
app.launch()