File size: 3,033 Bytes
0284d5c
 
a023bcb
 
0284d5c
 
 
 
a023bcb
 
 
 
8f263fc
a023bcb
 
 
 
 
 
 
 
0284d5c
cc4e355
 
0284d5c
 
 
8f263fc
a023bcb
 
 
0284d5c
8f263fc
 
 
a023bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f263fc
a023bcb
 
 
 
8f263fc
a023bcb
 
 
 
 
 
 
 
 
 
8f263fc
a023bcb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import os 
from pathlib import Path
import argparse
model_file = "Yi-6B.q4_k_m.gguf"
if not os.path.isfile("Yi-6B.q4_k_m.gguf"):
    os.system("wget -c https://huggingface.co/SamPurkis/Yi-6B-GGUF/resolve/main/Yi-6B.q4_k_m.gguf")

DEFAULT_MODEL_PATH = model_file
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", default=DEFAULT_MODEL_PATH, type=Path, help="model path")
parser.add_argument("--mode", default="chat", type=str, choices=["chat", "generate"], help="inference mode")
parser.add_argument("-l", "--max_length", default=512, type=int, help="max total length including prompt and output")
parser.add_argument("-c", "--max_context_length", default=512, type=int, help="max context length")
parser.add_argument("--top_k", default=0, type=int, help="top-k sampling")
parser.add_argument("--top_p", default=0.7, type=float, help="top-p sampling")
parser.add_argument("--temp", default=0.95, type=float, help="temperature")
parser.add_argument("--repeat_penalty", default=1.1, type=float, help="penalize repeat sequence of tokens")
parser.add_argument("-t", "--threads", default=0, type=int, help="number of threads for inference")
parser.add_argument("--plain", action="store_true", help="display in plain text without markdown support")
args = parser.parse_args()

from llama_cpp import Llama
llm = Llama(model_path=model_file)



def predict(input, chatbot, max_length, top_p, temperature, history):
    chatbot.append((input, ""))
    response = ""
    history.append(input)

    for output in llm(input, stream=True, temperature=temperature, top_p=top_p, max_tokens=max_length, ):
        piece = output['choices'][0]['text']
        response += piece
        chatbot[-1] = (chatbot[-1][0], response)

        yield chatbot, history

    history.append(response)
    yield chatbot, history


def reset_user_input():
    return gr.update(value="")


def reset_state():
    return [], []


with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">Yi-6B-GGUF by llama.cpp</h1>""")

    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=8)
            submitBtn = gr.Button("Submit", variant="primary")
        with gr.Column(scale=1):
            max_length = gr.Slider(0, 32048, value=args.max_length, step=1.0, label="Maximum Length", interactive=True)
            top_p = gr.Slider(0, 1, value=args.top_p, step=0.01, label="Top P", interactive=True)
            temperature = gr.Slider(0, 1, value=args.temp, step=0.01, label="Temperature", interactive=True)
            emptyBtn = gr.Button("Clear History")

    history = gr.State([])

    submitBtn.click(
        predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True
    )
    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)

demo.queue().launch(share=False, inbrowser=True)