gemini-rproxy / app.py
Moonfanz's picture
Upload 4 files
b25cdbe verified
from flask import Flask, request, jsonify, Response, stream_with_context, render_template_string
from google.generativeai.types import StopCandidateException, generation_types
from google.api_core.exceptions import InvalidArgument, ResourceExhausted, Aborted, InternalServerError, ServiceUnavailable, PermissionDenied
import google.generativeai as genai
import json
import os
import re
import logging
import func
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler
import time
import requests
from collections import deque
import random
from dataclasses import dataclass
from typing import Optional, Dict, Any
app = Flask(__name__)
os.environ['TZ'] = 'Asia/Shanghai'
app = Flask(__name__)
app.secret_key = os.urandom(24)
formatter = logging.Formatter('%(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
MAX_RETRIES = int(os.environ.get('MaxRetries', 3))
MAX_REQUESTS = int(os.environ.get('MaxRequests', 2))
LIMIT_WINDOW = int(os.environ.get('LimitWindow', 60))
RETRY_DELAY = 1
MAX_RETRY_DELAY = 16
request_counts = {}
api_key_blacklist = set()
api_key_blacklist_duration = 60
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
}
]
safety_settings_g2 = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "OFF"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "OFF"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "OFF"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "OFF"
}
]
@dataclass
class GeneratedText:
text: str
finish_reason: Optional[str] = None
class ResponseWrapper:
def __init__(self, data: Dict[Any, Any]):
self._data = data
self._text = self._extract_text()
self._finish_reason = self._extract_finish_reason()
self._prompt_token_count = self._extract_prompt_token_count()
self._candidates_token_count = self._extract_candidates_token_count()
self._total_token_count = self._extract_total_token_count()
self._thoughts = self._extract_thoughts()
def _extract_thoughts(self) -> Optional[str]:
try:
for part in self._data['candidates'][0]['content']['parts']:
if 'thought' in part:
return part['text']
return None
except (KeyError, IndexError):
return None
def _extract_text(self) -> str:
try:
for part in self._data['candidates'][0]['content']['parts']:
if 'thought' not in part:
return part['text']
return ""
except (KeyError, IndexError):
return ""
def _extract_finish_reason(self) -> Optional[str]:
try:
return self._data['candidates'][0].get('finishReason')
except (KeyError, IndexError):
return None
def _extract_prompt_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('promptTokenCount')
except (KeyError):
return None
def _extract_candidates_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('candidatesTokenCount')
except (KeyError):
return None
def _extract_total_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('totalTokenCount')
except (KeyError):
return None
@property
def text(self) -> str:
return self._text
@property
def finish_reason(self) -> Optional[str]:
return self._finish_reason
@property
def prompt_token_count(self) -> Optional[int]:
return self._prompt_token_count
@property
def candidates_token_count(self) -> Optional[int]:
return self._candidates_token_count
@property
def total_token_count(self) -> Optional[int]:
return self._total_token_count
class APIKeyManager:
def __init__(self):
self.api_keys = re.findall(r"AIzaSy[a-zA-Z0-9_-]{33}", os.environ.get('KeyArray'))
self.current_index = random.randint(0, len(self.api_keys) - 1)
def get_available_key(self):
num_keys = len(self.api_keys)
for _ in range(num_keys):
if self.current_index >= num_keys:
self.current_index = 0
current_key = self.api_keys[self.current_index]
self.current_index += 1
if current_key not in api_key_blacklist:
return current_key
logger.error("所有API key都已耗尽或被暂时禁用,请重新配置或稍后重试")
return None
def show_all_keys(self):
logger.info(f"当前可用API key个数: {len(self.api_keys)} ")
for i, api_key in enumerate(self.api_keys):
logger.info(f"API Key{i}: {api_key[:11]}...{api_key[-3:]}")
def blacklist_key(self, key):
logger.warning(f"{key[:11]} → 暂时禁用 {api_key_blacklist_duration} 秒")
api_key_blacklist.add(key)
scheduler.add_job(lambda: api_key_blacklist.discard(key), 'date', run_date=datetime.now() + timedelta(seconds=api_key_blacklist_duration))
key_manager = APIKeyManager()
key_manager.show_all_keys()
current_api_key = key_manager.get_available_key()
def switch_api_key():
global current_api_key
key = key_manager.get_available_key()
if key:
current_api_key = key
logger.info(f"API key 替换为 → {current_api_key[:11]}...{current_api_key[-3:]}")
else:
logger.error("API key 替换失败,所有API key都已耗尽或被暂时禁用,请重新配置或稍后重试")
logger.info(f"当前 API key: {current_api_key[:11]}...{current_api_key[-3:]}")
GEMINI_MODELS = [
{"id": "gemini-1.5-flash-8b-latest"},
{"id": "gemini-1.5-flash-8b-exp-0924"},
{"id": "gemini-1.5-flash-latest"},
{"id": "gemini-1.5-flash-exp-0827"},
{"id": "gemini-1.5-pro-latest"},
{"id": "gemini-1.5-pro-exp-0827"},
{"id": "learnlm-1.5-pro-experimental"},
{"id": "gemini-exp-1114"},
{"id": "gemini-exp-1121"},
{"id": "gemini-exp-1206"},
{"id": "gemini-2.0-flash-exp"},
{"id": "gemini-2.0-flash-thinking-exp-1219"},
{"id": "gemini-2.0-pro-exp"}
]
@app.route('/')
def index():
main_content = "Moonfanz Reminiproxy v2.3.1 2025-01-12"
html_template = """
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script>
function copyToClipboard(text) {
var textarea = document.createElement("textarea");
textarea.textContent = text;
textarea.style.position = "fixed";
document.body.appendChild(textarea);
textarea.select();
try {
return document.execCommand("copy");
} catch (ex) {
console.warn("Copy to clipboard failed.", ex);
return false;
} finally {
document.body.removeChild(textarea);
}
}
function copyLink(event) {
event.preventDefault();
const url = new URL(window.location.href);
const link = url.protocol + '//' + url.host + '/hf/v1';
copyToClipboard(link);
alert('链接已复制: ' + link);
}
</script>
</head>
<body>
{{ main_content }}<br/><br/>完全开源、免费且禁止商用<br/><br/>点击复制反向代理: <a href="v1" onclick="copyLink(event)">Copy Link</a><br/>聊天来源选择"自定义(兼容 OpenAI)"<br/>将复制的网址填入到自定义端点<br/>将设置password填入自定义API秘钥<br/><br/><br/>
</body>
</html>
"""
return render_template_string(html_template, main_content=main_content)
def is_within_rate_limit(api_key):
now = datetime.now()
if api_key not in request_counts:
request_counts[api_key] = deque()
while request_counts[api_key] and request_counts[api_key][0] < now - timedelta(seconds=LIMIT_WINDOW):
request_counts[api_key].popleft()
if len(request_counts[api_key]) >= MAX_REQUESTS:
earliest_request_time = request_counts[api_key][0]
wait_time = (earliest_request_time + timedelta(seconds=LIMIT_WINDOW)) - now
return False, wait_time.total_seconds()
else:
return True, 0
def increment_request_count(api_key):
now = datetime.now()
if api_key not in request_counts:
request_counts[api_key] = deque()
request_counts[api_key].append(now)
def handle_api_error(error, attempt):
if attempt > MAX_RETRIES:
logger.error(f"{MAX_RETRIES} 次尝试后仍然失败,请修改预设或输入")
return 0, jsonify({
'error': {
'message': f"{MAX_RETRIES} 次尝试后仍然失败,请修改预设或输入",
'type': 'max_retries_exceeded'
}
})
if isinstance(error, InvalidArgument):
logger.error(f"{current_api_key[:11]} → 无效,可能已过期或被删除")
key_manager.blacklist_key(current_api_key)
switch_api_key()
return 0, None
elif isinstance(error, ResourceExhausted):
delay = min(RETRY_DELAY * (2 ** attempt), MAX_RETRY_DELAY)
logger.warning(f"{current_api_key[:11]} → 429 官方资源耗尽 → {delay} 秒后重试...")
key_manager.blacklist_key(current_api_key)
switch_api_key()
time.sleep(delay)
return 0, None
elif isinstance(error, Aborted):
delay = min(RETRY_DELAY * (2 ** attempt), MAX_RETRY_DELAY)
logger.warning(f"{current_api_key[:11]} → 操作被中止 → {delay} 秒后重试...")
switch_api_key()
time.sleep(delay)
return 0, None
elif isinstance(error, InternalServerError):
delay = min(RETRY_DELAY * (2 ** attempt), MAX_RETRY_DELAY)
logger.warning(f"{current_api_key[:11]} → 500 服务器内部错误 → {delay} 秒后重试...")
switch_api_key()
time.sleep(delay)
return 0, None
elif isinstance(error, ServiceUnavailable):
delay = min(RETRY_DELAY * (2 ** attempt), MAX_RETRY_DELAY)
logger.warning(f"{current_api_key[:11]} → 503 服务不可用 → {delay} 秒后重试...")
switch_api_key()
time.sleep(delay)
return 0, None
elif isinstance(error, PermissionDenied):
logger.error(f"{current_api_key[:11]} → 403 权限被拒绝,该 API KEY 可能已经被官方封禁")
key_manager.blacklist_key(current_api_key)
switch_api_key()
return 0, None
elif isinstance(error, StopCandidateException):
logger.warning(f"AI输出内容被Gemini官方阻挡,代理没有得到有效回复")
switch_api_key()
return 0, None
elif isinstance(error, generation_types.BlockedPromptException):
try:
full_reason_str = str(error.args[0])
logger.error(f"{full_reason_str}")
if "block_reason:" in full_reason_str:
start_index = full_reason_str.find("block_reason:") + len("block_reason:")
block_reason_str = full_reason_str[start_index:].strip()
if block_reason_str == "SAFETY":
logger.warning(f"用户输入因安全原因被阻止")
return 1, None
elif block_reason_str == "BLOCKLIST":
logger.warning(f"用户输入因包含阻止列表中的术语而被阻止")
return 1, None
elif block_reason_str == "PROHIBITED_CONTENT":
logger.warning(f"用户输入因包含禁止内容而被阻止")
return 1, None
elif block_reason_str == "OTHER":
logger.warning(f"用户输入因未知原因被阻止")
return 1, None
else:
logger.warning(f"用户输入被阻止,原因未知: {block_reason_str}")
return 1, None
else:
logger.warning(f"用户输入被阻止,原因未知: {full_reason_str}")
return 1, None
except (IndexError, AttributeError) as e:
logger.error(f"获取提示原因失败↙\n{e}")
logger.error(f"提示被阻止↙\n{error}")
return 2, None
else:
logger.error(f"该模型还未发布,暂时不可用,请更换模型或未来一段时间再试")
logger.error(f"证明↙\n{error}")
return 2, None
@app.route('/hf/v1/chat/completions', methods=['POST'])
def chat_completions():
is_authenticated, auth_error, status_code = func.authenticate_request(request)
if not is_authenticated:
return auth_error if auth_error else jsonify({'error': '未授权'}), status_code if status_code else 401
request_data = request.get_json()
messages = request_data.get('messages', [])
model = request_data.get('model', 'gemini-2.0-flash-exp')
temperature = request_data.get('temperature', 1)
max_tokens = request_data.get('max_tokens', 8192)
show_thoughts = request_data.get('show_thoughts', False)
stream = request_data.get('stream', False)
hint = "流式" if stream else "非流"
logger.info(f"\n{model} [{hint}] → ...")
is_thinking = 'thinking' in model
api_version = 'v1alpha' if is_thinking else 'v1beta'
response_type = 'streamGenerateContent' if stream else 'generateContent'
is_SSE = '&alt=sse' if stream else ''
gemini_history, system_instruction, error_response = func.process_messages_for_gemini(messages)
if error_response:
logger.error(f"处理输入消息时出错↙\n {error_response}")
return jsonify(error_response), 400
def do_request(current_api_key, attempt):
isok, time_remaining = is_within_rate_limit(current_api_key)
if not isok:
logger.warning(f"暂时超过限额,该API key将在 {time_remaining} 秒后启用...")
switch_api_key()
return 0, None
increment_request_count(current_api_key)
url = f"https://generativelanguage.googleapis.com/{api_version}/models/{model}:{response_type}?key={current_api_key}{is_SSE}"
headers = {
"Content-Type": "application/json",
}
data = {
"contents": gemini_history,
"generationConfig": {
"temperature": temperature,
"maxOutputTokens": max_tokens,
},
"safetySettings": safety_settings_g2 if 'gemini-2.0-flash-exp' in model else safety_settings,
}
if system_instruction:
data["system_instruction"] = system_instruction
try:
response = requests.post(url, headers=headers, json=data, stream=True)
response.raise_for_status()
if stream:
return 1, response
else:
return 1, ResponseWrapper(response.json())
except requests.exceptions.RequestException as e:
return handle_api_error(e, attempt)
def generate_stream(response):
buffer = b""
try:
for line in response.iter_lines():
if not line:
continue
try:
if line.startswith(b'data: '):
line = line[6:]
buffer += line
try:
data = json.loads(buffer.decode('utf-8'))
buffer = b""
if 'candidates' in data and data['candidates']:
candidate = data['candidates'][0]
if 'content' in candidate:
content = candidate['content']
if 'parts' in content and content['parts']:
parts = content['parts']
if is_thinking and not show_thoughts:
parts = [part for part in parts if not part.get('thought')]
if parts:
text = parts[0].get('text', '')
finish_reason = candidate.get('finishReason')
if text:
data = {
'choices': [{
'delta': {
'content': text
},
'finish_reason': finish_reason,
'index': 0
}],
'object': 'chat.completion.chunk'
}
yield f"data: {json.dumps(data)}\n\n"
except json.JSONDecodeError:
logger.debug(f"JSONDecodeError, buffer now: {buffer}")
continue
except Exception as e:
logger.error(f"Stream error during processing: {e}, Raw data line: {line}")
yield f"data: {json.dumps({'error': str(e)})}\n\n"
yield f"data: {json.dumps({'choices': [{'delta': {}, 'finish_reason': 'stop', 'index': 0}]})}\n\n"
except Exception as e:
logger.error(f"Stream error: {e}")
yield f"data: {json.dumps({'error': str(e)})}\n\n"
attempt = 0
success = 0
response = None
for attempt in range(1, MAX_RETRIES + 1):
logger.info(f"第 {attempt}/{MAX_RETRIES} 次尝试 ...")
success, response = do_request(current_api_key, attempt)
if success == 1:
break
elif success == 2:
logger.error(f"{model} 很可能暂时不可用,请更换模型或未来一段时间再试")
response = {
'error': {
'message': f'{model} 很可能暂时不可用,请更换模型或未来一段时间再试',
'type': 'internal_server_error'
}
}
return jsonify(response), 503
else:
logger.error(f"{MAX_RETRIES} 次尝试均失败,请调整配置,或等待官方恢复,或向Moonfanz反馈")
response = {
'error': {
'message': f'{MAX_RETRIES} 次尝试均失败,请调整配置或向Moonfanz反馈',
'type': 'internal_server_error'
}
}
return jsonify(response), 500 if response is not None else 503
if stream:
return Response(
stream_with_context(generate_stream(response)),
mimetype='text/event-stream'
)
else:
try:
text_content = response.text
prompt_tokens = response.prompt_token_count
completion_tokens = response.candidates_token_count
total_tokens = response.total_token_count
finish_reason = response.finish_reason
if is_thinking and show_thoughts:
# 把thoughts加到text_content的前面再加一个回车
text_content = response.thoughts + '\n' + text_content
logger.info(f"finish_reason: {finish_reason}")
except AttributeError as e:
return jsonify({
'error': {
'message': 'AI响应处理失败',
'type': 'response_processing_error'
}
}), 500
response_data = {
'id': 'chatcmpl-xxxxxxxxxxxx',
'object': 'chat.completion',
'created': int(datetime.now().timestamp()),
'model': model,
'choices': [{
'index': 0,
'message': {
'role': 'assistant',
'content': text_content
},
'finish_reason': finish_reason
}],
'usage': {
'prompt_tokens': prompt_tokens,
'completion_tokens': completion_tokens,
'total_tokens': total_tokens
}
}
logger.info(f"200!")
return jsonify(response_data)
@app.route('/hf/v1/models', methods=['GET'])
def list_models():
response = {"object": "list", "data": GEMINI_MODELS}
return jsonify(response)
def keep_alive():
try:
response = requests.get("http://127.0.0.1:7860/", timeout=10)
response.raise_for_status()
print(f"Keep alive ping successful: {response.status_code} at {time.ctime()}")
except requests.exceptions.RequestException as e:
print(f"Keep alive ping failed: {e} at {time.ctime()}")
if __name__ == '__main__':
scheduler = BackgroundScheduler()
scheduler.add_job(keep_alive, 'interval', hours=12)
scheduler.start()
logger.info(f"Reminiproxy v2.3.1 启动")
logger.info(f"最大尝试次数/MaxRetries: {MAX_RETRIES}")
logger.info(f"最大请求次数/MaxRequests: {MAX_REQUESTS}")
logger.info(f"请求限额窗口/LimitWindow: {LIMIT_WINDOW} 秒")
app.run(debug=True, host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))