File size: 7,002 Bytes
bbfae1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import requests
import json
import gradio as gr
# from concurrent.futures import ThreadPoolExecutor
import pdfplumber
import pandas as pd
import time
from cnocr import CnOcr
from sentence_transformers import SentenceTransformer, models, util
word_embedding_model = models.Transformer('uer/sbert-base-chinese-nli', do_lower_case=True)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='cls')
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
ocr = CnOcr()
# chat_url = 'https://souljoy-my-api.hf.space/sale'
chat_url = 'https://souljoy-my-api.hf.space/chatpdf'
headers = {
'Content-Type': 'application/json',
}
# thread_pool_executor = ThreadPoolExecutor(max_workers=4)
history_max_len = 500
all_max_len = 3000
def get_emb(text):
emb_url = 'https://souljoy-my-api.hf.space/embeddings'
data = {"content": text}
try:
result = requests.post(url=emb_url,
data=json.dumps(data),
headers=headers
)
return result.json()['data'][0]['embedding']
except Exception as e:
print('data', data, 'result json', result.json())
def doc_emb(doc: str):
texts = doc.split('\n')
# futures = []
emb_list = embedder.encode(texts)
# for text in texts:
# futures.append(thread_pool_executor.submit(get_emb, text))
# for f in futures:
# emb_list.append(f.result())
print('\n'.join(texts))
return texts, emb_list, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(
value="""操作说明 step 3:PDF解析提交成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(visible=True)
def get_response(msg, bot, doc_text_list, doc_embeddings):
# future = thread_pool_executor.submit(get_emb, msg)
now_len = len(msg)
req_json = {'question': msg}
his_bg = -1
for i in range(len(bot) - 1, -1, -1):
if now_len + len(bot[i][0]) + len(bot[i][1]) > history_max_len:
break
now_len += len(bot[i][0]) + len(bot[i][1])
his_bg = i
req_json['history'] = [] if his_bg == -1 else bot[his_bg:]
# query_embedding = future.result()
query_embedding = embedder.encode([msg])
cos_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
score_index = [[score, index] for score, index in zip(cos_scores, [i for i in range(len(cos_scores))])]
score_index.sort(key=lambda x: x[0], reverse=True)
print('score_index:\n', score_index)
index_set, sub_doc_list = set(), []
for s_i in score_index:
doc = doc_text_list[s_i[1]]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1])
now_len += len(doc)
# 可能段落截断错误,所以把上下段也加入进来
if s_i[1] > 0 and s_i[1] -1 not in index_set:
doc = doc_text_list[s_i[1]-1]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1]-1)
now_len += len(doc)
if s_i[1] + 1 < len(doc_text_list) and s_i[1] + 1 not in index_set:
doc = doc_text_list[s_i[1]+1]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1]+1)
now_len += len(doc)
index_list = list(index_set)
index_list.sort()
for i in index_list:
sub_doc_list.append(doc_text_list[i])
req_json['doc'] = '' if len(sub_doc_list) == 0 else '\n'.join(sub_doc_list)
data = {"content": json.dumps(req_json)}
print('data:\n', req_json)
result = requests.post(url=chat_url,
data=json.dumps(data),
headers=headers
)
res = result.json()['content']
bot.append([msg, res])
return bot[max(0, len(bot) - 3):]
def up_file(files):
doc_text_list = []
for idx, file in enumerate(files):
print(file.name)
with pdfplumber.open(file.name) as pdf:
for i in range(len(pdf.pages)):
# 读取PDF文档第i+1页
page = pdf.pages[i]
res_list = page.extract_text().split('\n')[:-1]
for j in range(len(page.images)):
# 获取图片的二进制流
img = page.images[j]
file_name = '{}-{}-{}.png'.format(str(time.time()), str(i), str(j))
with open(file_name, mode='wb') as f:
f.write(img['stream'].get_data())
try:
res = ocr.ocr(file_name)
except Exception as e:
res = []
if len(res) > 0:
res_list.append(' '.join([re['text'] for re in res]))
tables = page.extract_tables()
for table in tables:
# 第一列当成表头:
df = pd.DataFrame(table[1:], columns=table[0])
try:
records = json.loads(df.to_json(orient="records", force_ascii=False))
for rec in records:
res_list.append(json.dumps(rec, ensure_ascii=False))
except Exception as e:
res_list.append(str(df))
doc_text_list += res_list
doc_text_list = [str(text).strip() for text in doc_text_list if len(str(text).strip()) > 0]
print(doc_text_list)
return gr.Textbox.update(value='\n'.join(doc_text_list), visible=True), gr.Button.update(
visible=True), gr.Markdown.update(
value="操作说明 step 2:确认PDF解析结果(可修正),点击“提交解析结果”,随后进行对话")
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
file = gr.File(file_types=['.pdf'], label='点击上传PDF,进行解析(支持多文档、表格、OCR)', file_count='multiple')
doc_bu = gr.Button(value='提交解析结果', visible=False)
txt = gr.Textbox(label='PDF解析结果', visible=False)
doc_text_state = gr.State([])
doc_emb_state = gr.State([])
with gr.Column():
md = gr.Markdown("""操作说明 step 1:点击左侧区域,上传PDF,进行解析""")
chat_bot = gr.Chatbot(visible=False)
msg_txt = gr.Textbox(label='消息框', placeholder='输入消息,点击发送', visible=False)
chat_bu = gr.Button(value='发送', visible=False)
file.change(up_file, [file], [txt, doc_bu, md])
doc_bu.click(doc_emb, [txt], [doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot])
chat_bu.click(get_response, [msg_txt, chat_bot, doc_text_state, doc_emb_state], [chat_bot])
if __name__ == "__main__":
demo.queue().launch()
# demo.queue().launch(share=False, server_name='172.22.2.54', server_port=9191) |